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Abstract
Recommendation systems are an integral part of
Artificial Intelligence (AI) and have become in-
creasingly important in the growing age of com-
mercialization in AI. Deep learning (DL) tech-
niques for recommendation systems (RS) provide
powerful latent-feature models for effective recom-
mendation but suffer from the major drawback of
being non-interpretable. In this paper we describe
a framework for explainable temporal recommen-
dations in a DL model. We consider an LSTM
based Recurrent Neural Network (RNN) architec-
ture for recommendation and a neighbourhood-
based scheme for generating explanations in the
model. We demonstrate the effectiveness of our ap-
proach through experiments on the Netflix dataset
by jointly optimizing for both prediction accuracy
and explainability.

1 Introduction
Explainability in machine learning models has been a topic
of intense research and debate. The issue of explainability in
recommendation systems (RS) is all the more pertinent due to
their sheer ubiquity. RS have become embedded in all forms
of user-interface interaction and now form the core of our
every day activities. So, to improve users’ experience and
trust, transparency and explainability are increasingly being
incorporated in practical recommender systems. For instance,
Netflix justifies the movies recommended by displaying sim-
ilar movies obtained through the social network of users.
Similarly, Amazon justifies its recommendations by show-
ing similar items obtained through neighbourhood based Col-
laborative Filtering (CF). There has been growing research
in Deep Learning (DL) based models for recommendations
which are known for giving excellent prediction accuracies.
Now there is almost a universal consensus regarding the fact
that the main drawback of Deep Learning models is their
non-interpretability, however there have been recent efforts
towards mitigating this drawback such as [Binder et al., 2016;
Zhang and Wallace, 2015].

For RS, most explanation based methods either fall into
the classical neighbourhood based Collaborative Filtering
(CF) or rule-based methods [Pazzani and Billsus, 2007;

Lops et al., 2011]. CF based recommendation methods,
which leverage the wisdom of the crowd are more popular
due to their scalability and robustness. Some recent works
such as [Abdollahi and Nasraoui, 2016a] and [Abdollahi
and Nasraoui, 2016b] have integrated explanations into Ma-
trix Factorization (which is a latent factor model), and into
Restricted Boltzmann Machines respectively. These how-
ever cannot be applied to temporal recommendations which
seek to model user preferences over time. Modeling tempo-
ral evolution of user preferences and item states for effec-
tive recommendation systems (RS) is an active area of re-
search and recent publications have illustrated the effective-
ness of Recurrent Neural Networks (RNN) [Wu et al., 2017;
Hidasi et al., 2016] for the same.

Recurrent Recommender Networks [Wu et al., 2017] is
a powerful technique of temporal recommendations. We
build our model on top of this architecture by incorporat-
ing a neighbourhood-style explanation scheme. Here, LSTM
[Hochreiter and Schmidhuber, 1997] based RNNs are used
for modelling user and item latent states. The specific do-
main of movie recommendation is targeted in the experiments
but the method is fairly generalizable across domains. We
first formalize the notion of explainability by defining a time-
varying bipartite graph between users and items such that the
edge weights measure a notion of explainability of an item
for a user by exploiting ratings of other users similar to the
one in question. To optimize for explainability in addition to
the prediction accuracy, we include a term in the optimization
objective that seeks to minimize the distance between latent
features of items and users weighed by their explainability as
defined previously.

2 Related Works
2.1 Explainable Recommendations
Explanations in recommendation systems has been a topic of
active research for a very long time, motivated by the gen-
eral consensus that modern RS algorithms have been black
boxes offering no transparency or human-interpretable in-
sights. Although the underlying algorithm of a recommenda-
tion framework may influence the type of explanations gen-
erated, it is also an ecologically valid method to have a com-
pletely separate engine for generating explanations [Tintarev
and Masthoff, 2011]. This is particularly interesting for com-
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plex RS models like those using collaborative filtering and/or
deep learning techniques [Herlocker et al., 2000; Hu et al.,
2008]. Some methods generate explanations based on aux-
iliary data like review texts [Zhang, 2015] while others do
not require additional information (apart from that used in the
recommendation algorithm) for generating explanations [Ab-
dollahi and Nasraoui, 2016b; Abdollahi and Nasraoui, 2016a;
Herlocker et al., 2000].

2.2 Temporal Recommendations
The temporal evolution of user preferences and item states
has been discussed in multiple previous works. Recent pa-
pers which have been very impactful include [Donkers et al.,
2017] and RRN [Wu et al., 2017]. [Donkers et al., 2017]
developed a Gated Recurrent Unit(GRU) [Cho et al., 2014]
based RNN for sequential modelling of user preferences. A
rectified linear integration of user states is done in their mod-
ified GRU cell to evolve each user state for personalized
recommendation. On the other hand, RRN targeted movie
recommendation tasks by exploiting explicit feedback from
users. Customized LSTM cells were used for modelling the
function through which user and item latent states evolve.
[Devooght and Bersini, 2017] leverage sequence information
to mitigate the scarcity of user-item interactions and identify
items that will be eventually preferred and that those that will
be immediately desired. Since our architecture is built over
RRN, we elaborate on the details in Section 3.2.

3 The Model
3.1 Explanations
Our model uses only the users’ movie rating data for predict-
ing as well as explaining recommendations. This is in con-
trast to many previous studies that consider other data vari-
ables such as user demographics, text reviews [Zhang, 2015],
user preferences for entities associated with the items to be
recommended [He et al., 2015], etc for predicting recommen-
dations, as well as studies that use these data variables as aux-
iliary information for only explaining their recommendations
[Herlocker et al., 2000]. We employ a neighbourhood based
explanation scheme which is similar to [Abdollahi and Nas-
raoui, 2016b] and formalize the definition of neighbourhood
and explainability as follows.

Neighbourhood is calculated based on discounted cosine
similarity between the users’ (say user i and user k) as
simi,k =

∑
t,m γtrim|t · rkm|t, where the discounting fac-

tor, γt = 1
1+t and rim|t represents user i’s rating at time t

for a movie m. We then pick the p most similar users as the
neighbourhood of user i.

This notion of a neighbourhood style explanation has also
been employed in various graph based models such as [He et
al., 2015]. We define a temporally varying bipartite graph be-
tween the set of users and the set of items with the following
edge weight matrix

Mumt =

∑
z∈Qp

t (u)
rzm|t

p×max{rzm|t∀z ∈ Qpt (u)}
(1)

Here Qpt (u) is the set of p neighbours for user u and rzm|t is
the rating of user z of movie m at time step t. It is important

to note thatMumt, which represents the edge-weight between
user u and movie m at time step t is a real number between
0 and 1. It has the interpretation of being a quantification of
how explainable is movie m for user u. rzm|t is 0 if user z
has not rated item m at time step t. So, a value of Mumt = 0
would mean that none of the users in the neighborhood of
user u have rated movie m at time step t and hence movie m
is not explainable to user u at that time step.

In addition, since we postulate that there are stationary
components as well in the latent features of users and items
(Section 3.2) we also develop a stationary bipartite graph be-
tween the set of users and the set of items for explanations.
This is in addition to the above time varying interpretation.
For this bipartite graph, the edge weight matrix is described
as

Mum =

∑
z∈Qp(u) rzm

p×max{rzm∀z ∈ Qp(u)}
(2)

Here, all the terms have the same meaning as in the previous
equation, but they appear without the time index.

3.2 The Rating Prediction Model
We use LSTM based Recurrent Neural Networks for mod-
elling the temporal evolution of user and movie latent states.
The approach is essentially matrix factorization through time
with the temporal evolution of latent factors being modelled
by LSTM based Recurrent Neural Networks. This approach
is similar in spirit to RRN [Wu et al., 2017] and the novelty
of our method is the incorporation of explainability which we
describe in Section 3.3.

We denote by uit and mjt, the latent features of user i and
movie j respectively at time index t. Let r̂ij|t denote the pre-
dicted rating for user i on movie j at time index t and let rij|t
be the actual rating. {rij|t}j denotes the set of ratings for all
movies j. We define the following model for updates

r̂ij|t = f(uit,mjt)

ui,t+1 = g(uit, {rij|t}j)
mi,t+1 = h(mit, {rij|t}j)

The functions f, g, h are learned by the model to infer user
and movie states. Section 3.1 of the RRN paper [Wu et al.,
2017] elaborates on the user and movie state formulation,
which we mention briefly below.

yt = V [xt, 1, τt, τt−1], ut = LSTM(ut−1, yt)

Here τt represents the wallclock at time t, xt is the rating vec-
tor for the user and V represents the transformation. Similar
to the approach followed in RRN [Wu et al., 2017], we in-
clude the profile identities of the user and the movie as the
stationary components of the rating in addition to their time
varying state vectors. So,

r̂ij|t = f(uit,mjt, ui,mj)

= 〈ũit, m̃jt〉+ 〈ui,mj〉
where ũit = Auit + c & m̃jt = Bmjt + d. This decompo-
sition makes it evident how RRN is essentially matrix factor-
ization through time as mentioned earlier.



Figure 1: Shown above are two instances of top-3 recommen-
dations, decreasing left to right in confidence. Here, Epoch 1:
within a month before present, Epoch 2: within one year before
present, and Epoch 3: ≥ 1 year before present. In instance a)
dominance of recency in ranking is seen, while in b) the domi-
nance of the sum of the ranking is evident. These are anecdo-
tal examples from the evaluation of TemEx-Fluid on the Netflix
dataset.

3.3 Incorporating Explainability in the Model
Since the user and item (movie) states are time varying, we
need a time varying bipartite graph which is defined by a time
varying edge-weight matrix Mijt. If movie j is explainable
to user i in at time step t, then their latent representations
m̃jt and ũit respectively must be close. Based on this intu-
ition, we include the term (m̃jt− ũit)2Mijt in our minimiza-
tion objective. We formulate the overall objective in such a
way that both prediction accuracy as well as explainability
are optimized. So, if there are two movies which are likely to
be equally preferred by the user, the model will recommend
the movie which is more explainable. It is important to note
that explainability and prediction accuracy may be at odds for
some user-movie pairs and hence we need to define a joint ob-
jective function including both the aspects, which is defined
as follows

L =
∑
i,j

(
∑
t

(rij|t − r̂ij|t(θ))2 + α(m̃jt − ũit)2Mijt)

+β(mjt − uit)2Mij) +R(θ)

The benefit of having temporally varying explanation-
graphs is that the generated explanations aren’t the conven-
tional ‘7/10 people with similar interests as you have rated
this movie 4 and higher” but can employ information related
to rating distribution across time too, as seen in Figure 1.

If we use the heuristic that explanations in the near past
are more relevant than those in the far past, we can weigh
the term (m̃jt − ũit)2Mijt for explanations by a temporally

decaying factor α(t). In this paper, we use the specific form
of α(t) to be exp (−αt) but there are other popular choices
of this discount factor as well [cite other decaying functions
used in ML training]. So, the modified objective function
becomes

L′ =
∑
i,j

(
∑
t

(rij|t − r̂ij|t(θ))2 + e(−αt)(m̃jt − ũit)2Mijt)

+β(mjt − uit)2Mij) +R(θ)

Here, we call the model corresponding to the objective
function L as TempEx-Dry and the one corresponding to L’
as TempEx-Fluid. We then perform simulations for both the
objective functions and compare their pros and cons empiri-
cally.

3.4 Training
Although the conventional method of training Recurrent Neu-
ral Networks is Backpropagation Through Time (BPTT), as
mentioned in [Wu et al., 2017], backpropagation through two
sequences (rating depends on both user state RNN and item
state RNN) is computationally infeasible. We adopt the strat-
egy of subspace descent as done in [Wu et al., 2017] to alle-
viate this problem. In practice, we found that using Dropout
[Srivastava et al., 2014] helps in stabilizing the gradients and
preventing over-fitting due to the additional terms introduced
in the minimization objective. The hyperparameters α and β
were tuned by a grid-search in the range 0 to 1 and the tuned
value of α is kept at 0.4, while that of β is kept at 0.6 through-
out all experiments.

4 Simulation Studies
4.1 Setup
Through a series of simulation experiments, we seek to un-
derstand two basic questions, 1) How effective is the model
in generating explanations? and 2) What is the trade-off be-
tween prediction accuracy and explainability? All our exper-
iments have been done using Tensorflow r1.4 [Abadi et al.,
2016] in Python 3. We use ADAM optimizer during training
[Kingma and Ba, 2014]. We perform all experiments on a
timestamped Netflix dataset used in [Wu et al., 2017], which
was first used in [Diao et al., 2014]. It consists of 100M
movie ratings from 1999 to 2005, where each data point is a
(user-id, item-id, time-stamp, rating) tuple with a time stamp
granularity of 1 day. For consistency, we use the same pre-
processing and train-test split as in [Wu et al., 2017].

4.2 Benefit of Explanations
To answer 1), we use standard IR metrics like precision and
recall with the notion of explainability. [Abdollahi and Nas-
raoui, 2016b] introduces Mean Explainable Precision (MEP)
and Mean Explainable Recall (MER) metrics. To state briefly,
MEP is defined as the ratio of the number of explainable items
recommended to the total recommended items for each user
averaged over all users. Similarly, MER is the number of ex-
plainable items recommended to the total number of explain-
able items for each user averaged over all users. We bench-
mark our performance against state of the art models such



Table 1: RMSE and MRR for benchmark models at p = 50 for the Netflix dataset
RRN T-SVD PMF ERBM EMF TempEx-Dry TempEx-Fluid

MRR 0.371 0.342 0.322 0.321 0.318 0.374 0.382
RMSE 0.922 0.927 0.925 0.931 0.934 0.923 0.919

Figure 2: MEP, MER, Mean Average Precision (MAP) and MR (Mean Recall) for benchmark models with varying number of
neighbours. All the values are averaged over the test set for all users

as RRN, T-SVD, PMF and recent explainable CF methods
like EMF and ERBM [Wu et al., 2017; Mnih and Salakhut-
dinov, 2008; Koren, 2010; Abdollahi and Nasraoui, 2016a;
Abdollahi and Nasraoui, 2016b]. We also evaluate two ver-
sions of our model- without incorporation of the tempo-
rally weighted explanation term (TempEx-Dry), and with
an exponentially decaying temporal weight on explanations
(TempEx-Fluid).

As revealed in the top row of Figure 2, TempEx-Fluid has
the best measure of explainability across all values of p and
it also performs consistently better than TempEx-Dry. So,
temporally weighing the explainability term indeed leads to a
more explainable model.

4.3 Tradeoff between Explanations and Prediction
Accuracy

To answer 2), we evaluate the performance of our model
against benchmark models on standard metrics like RMSE,
Mean Average Precision (MAP), Mean Recall (MR) and
Mean Reciprocal Rank (MRR). The purpose of this evalua-
tion is to see whether incorporation of the explainability terms
in the optimization objective leads to substantial gains /losses
on the actual prediction accuracy of ratings.

Table 1 and the bottom row of Figure 2 shows the results of
our analysis. At p = 50 we observe that the RMSE and MRR
values of TempEx-Fluid are higher than the standard RRN
model. This indicates that incorporating explainability also

improves the prediction accuracy on the test set by impos-
ing an additional regularizer in the model. The bottom row
of Figure 2 shows that TempEx-Fluid consistently has better
performance on Mean Average Precision and Mean Recall
for all values of p. This leads further credence to the fact
that there is no compromise being made on prediction accu-
racy by including explainability. Also, a comparison between
TempEx-Dry and TempEx-Fluid reveals that TempEx-Fluid
performs consistently better for all values of p. This is due to
the more nuanced temporal decay in the optimization objec-
tive which appropriately weighs down past effects.

5 Conclusion
In this paper, we devised a methodology of incorporating
explanations in time-series recommendation. We devised a
time-varying neighbourhood style explanation scheme and
jointly optimized for prediction accuracy and explainability.
Through simulation results we demonstrated the efficacy of
the proposed framework. It is important to note that our
method of explanation is different from the core recommen-
dation algorithm, which is a common practice in explainable
RS. However, as future work we plan to devise an explanation
scheme that tries to explain the recommendation algorithm.
Since, our algorithm is a deep learning model, we need to in-
corporate schemes like layer-wise relevance propagation that
seek to propagate the relevance of the output through the lay-
ers of the network and assign relevance to the inputs.
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