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ABSTRACT
Recent studies in recommendation systems emphasize the signifi-
cance of modeling latent features behind temporal evolution of user
preference and item state to make relevant suggestions. However,
static and dynamic behaviors and trends of users and items, which
highly influence the feasibility of recommendations, were not ad-
equately addressed in previous works. In this work, we leverage
the temporal and latent feature modelling capabilities of Recur-
rent Neural Network (RNN) and Generative Adversarial Network
(GAN), respectively, to propose a Recurrent Generative Adversar-
ial Network (RecGAN). We use customized Gated Recurrent Unit
(GRU) cells to capture latent features of users and items observable
from short-term and long-term temporal profiles. The modification
also includes collaborative filtering mechanisms to improve the
relevance of recommended items. We evaluate RecGAN using two
datasets on food and movie recommendation. Results indicate that
our model outperforms other baseline models irrespective of user
behavior and density of training data.
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1 INTRODUCTION
Recent publications have illustrated the effectiveness of Recurrent
Neural Networks (RNN) [11, 19, 21], Generative Adversarial Net-
works (GAN) [8], and Collaborative Filtering (CF) [11, 22] in RS.
Modeling the temporal evolution of user preferences and item states
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for effective recommendation systems (RS) is an active area of re-
search. The necessity of learning static (long-term) and dynamic
(short-term) behaviors and trends of users and items has also been
well recognized but not adequately addressed. Moreover, tradi-
tionally, RS has focused only on discriminative retrieval and rank-
ing of items, which aims to judge the relevancy of an user-item
pair [4, 13, 17, 20]. We believe such a scope limits the effective
learning of comprehensive latent representations of/between users
and items.

In this work, inspired by Recurrent Recommender Networks
(RRN) [21] and Information Retrieval GAN (IRGAN) [20], we pro-
pose Recurrent Generative Adversarial Networks for Recommenda-
tion Systems (RecGAN) to improve recommendation performance
by learning temporal latent features of user and item under the GAN
framework. We adopt the generative modelling framework to learn
both the relevancy distribution of items for users (generator) and
to exploit the unlabelled sequence of generated relevant items to
achieve a better estimate of relevancy (discriminator). Furthermore,
we model temporal aspects found in time-series data using RNN,
which also naturally fits into the GAN framework as evidenced
by recent works [7, 15]. We customize the Gated Recurrent Unit
(GRU) [3], a form of RNN cell, to model the latent features observ-
able from short-term and long-term user behaviors and item states
effectively. Specifically, we introduced the use of ReLU activation
function in the update gate of the GRU cell, and added collaborative
techniques into the GRU model. Such a design allows RecGAN to
attain more fine-grained user and item models from complex latent
relationships.

We evaluate ourwork using two datasets, MyFitnessPal (MFP) [1]
and Netflix [21], across two different application domains, namely
food and movie, to test the versatility of RecGAN. Note that MFP
(diet logs) and Netflix (movie ratings) consist of implicit and explicit
feedback of user preference, respectively. Our results show that
RecGAN effectively handles both scenarios leveraging adversarial
training of the custom-GRU based RNNs and surpasses the cur-
rent state-of-the-art models in various evaluation metrics. There is
around 10% increase in precision values of RecGAN over Probabilis-
tic Matrix Factorization (PMF) [14] on the MFP dataset. In addition,
RecGAN has over 1.4% increase in RMSE over RRN and around 3%
increase over PMF on the Netflix dataset.

2 RELATEDWORK
2.1 Recurrent Neural Networks for RS
The temporal aspect of user preferences and item states were pre-
viously discussed in numerous works [9, 10, 18, 19]. Two of the
most recent publications, which inspired our work, dealing with
temporal dynamics for RS include Donkers et al. [6] and RRN [21].
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Donkers et al. proposed a GRU based RNN for sequential modelling
of user preferences. A rectified linear integration of user states
is done in their modified GRU cell to evolve each user state for
personalized recommendation. On the other hand, RRN targeted
movie recommendation tasks by exploiting explicit feedback from
users. Customized LSTM cells were used for modelling the func-
tion through which user and item latent states evolve. Devooght
et al. [5] leveraged sequence information to mitigate the scarcity
of user-item interactions and identify items that will be eventually
preferred and that those that will be immediately desired. However,
these methods have not been able to precisely identify time vary-
ing latent representations for users and items that are relevant for
temporal recommendations.

2.2 Generative Adversarial Networks for RS
Generative Adversarial Networks (GAN) were first introduced in
2014 and demonstrated their effectiveness in deep generative mod-
elling. IRGAN [20] was the first paper to propose the use of this
mini-max game framework to train Information Retrieval (IR) sys-
tems, including RS. Their evaluation results show significant gains
over state-of-the-art baselines from different IR domains. However,
a simple matrix factorization is used for the discriminator and gen-
erator without considering the temporal aspects of latent features.
We extend and modify the GAN framework by incorporating a
temporal modelling technique as described in following section.

3 THE RECGAN FRAMEWORK
Exploiting the temporal modelling capabilities of RNN and the la-
tent feature modelling power of GAN we design a mini-max game
framework for effective RS. Both the generator and the discrim-
inator exploit GRU based RNN since it has lower computational
overload than LSTM, and is more effective with small training data.
This is desirable because data sparsity is one of the major bottle-
necks for RS. The term ratings in the context of this paper is used
both for explicit (e.g. movie ratings) and implicit (e.g. diet logs of
repeated foods) feedback. For the implicit feedback, the rating rep-
resents the likelihood of a user consuming an item (e.g., food). It
is important to note that for successful adversarial training, the
generator and the discriminator must have equally sound mod-
elling power and hence both of them are designed to have a similar
recurrent architecture as described in Sections 3.1 and 3.2.

3.1 The Generator
For every user u, the ground-truth temporal preference distribu-
tion is denoted as Yu = [yu1 , ..., y

u
t , ..., y

u
T ] where yut is a vector

representing the ratings of user u over all items at time t . To handle
both temporally static and dynamic preference of the users, we use
Leaky ReLU activation in the update gate xut of the GRU cell as
shown in Eq. 1. This forces the model to place greater importance
on past trends for users who show static preference trends and
make routine choices. It also implies that, users who show dynamic
preference trends and frequently make spontaneous choices (in-
dicated by diverse preferences over time) would be automatically
modelled favoring the collaborative aspect of the GRU cells de-
scribed subsequently [11]. This is because the ReLU update gate
will fire more strongly towards forgetting past trends. The GRU

forward equations are as follows:

xut = RELU (Wu
xhh

u
t−1 +W

u
xky

u
t ) (1)

rut = σ (Wu
rhh

u
t−1 +W

u
rky

u
t ) (2)

mu
t = tanh(Wh (rut · hut−1) +Winputyut ) (3)

hut = (1 − xut ) · hut−1 + x
u
t ·mu

t (4)
where rut is the reset gate of the GRU cell with sigmoid (σ ) non-
linearity, and hut is the hidden state at time t . Furthermore,Wxh ,
Wxk , Wrh and Wrk denote weight matrices for the respective
update x and reset r gates. Subscript h denotes the weight matrix
for the corresponding hidden state while k denotes the weight
matrix for the input yut .

Ultimately, the generator predicts a sequence of items that are
highly likely to be consumed by the user u from t = 0 to T (one
item per t ). This is denoted as Genu = WoutputHu

д , where Hu
д =

[hu1 , ..., h
u
t , ..., h

u
T ]. During training, Genu is iteratively inferred

and the model is trained by providing the ground-truth till a time
index say ttrain < T . So, the outputGenu from t = 0 to t = ttrain is
reconstruction and that from t = ttrain to t = T is prediction. Dur-
ing testing, the recommendation can be made based on the Genu
at the required time instances. Note thatWinput andWoutput ma-
trices are invariant across users. This allows us to learn correlation
between users’ preferences over items and model dynamic temporal
user preferences by modifying the GRU exploiting collaborative
filtering and Leaky ReLU activation in the update gate.

3.2 The Discriminator
The Discriminator is another GRU based RNN that determines
the probability of Genu being sampled from the true underlying
distribution of users’ preference over all items. The GRU forward
equations for the discriminator are shown in Eq. 5 to 8. Note that
variables and weight matrices are differentiated from the generator
using the hat notation.

x̂ut = RELU (Ŵu
xh ĥ

u
t−1 + Ŵ

u
xky

u
t ) (5)

r̂ut = σ (Ŵu
rh ĥ

u
t−1 + Ŵ

u
rky

u
t ) (6)

m̂u
t = tanh(Ŵh (r̂ut · ĥut−1) + Ŵinputyut ) (7)

ĥut = (1 − x̂ut ) · ĥut−1 + x̂
u
t · m̂u

t (8)
The output of the discriminator, the probability of Genu being

sampled from the true underlying distribution, is given by Disu =
σ (VoutputHu

d ), where Hu
d = [ĥ

u
1 , ...., ĥ

u
T ] is the vector of hidden

states. The final sigmoid non-linearity in discriminator (not present
in generator) is to constrain its output in the range (0, 1) so that it is
representative of a probability value. Over the course of training, the
probability converges to 0.5, which means that the discriminator
can no longer successfully discriminate between the generated
samples of user-ratings over items and the real ratings.

3.3 The Mini-Max Game
As proposed in [8], we let the generator and the discriminator play
a minimax game. The belief is that at each time index t , there exists
a true underlying distribution of user-preferences over items, let us
call it Dr eal |t . At this time index, the generator generates ratings
for each user (i) and item (j) pair which we denote by (r |i, j, t). The
generator has in effect learned a distribution, which we call Dдen |t .

373



RecGAN: Recurrent GANs for Recommendation Systems RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

Algorithm 1 The Adversarial Training Procedure
1: Input: GenΘ(r |i, j, t ), DisΦ(r |i, j, t ), Sд , Sd
2: Data: Training Sequence of user ratings over items
3: Initialize: GenΘ(r |i, j, t ) and DisΦ(r |i, j, t ) with
4: random parameters Θ, Φ
5: while Convergence criteria not reached do
6: for Sд number of steps do
7: GenΘ(r |i, j, t ) generates rating values
8: Θ← UpdateParams(Gen)
9: for Sd number of steps do
10: DisΦ(r |i, j, t ) assigns likelihood value to the rating

values being from the true distribution
11: Φ← UpdateParams(Dis)

In fact, what we observe and have access to is a sample from this
distribution, Dдen |t [2]. Now, the minimax game for our context
can be formulated as follows

Q∗ = min
Gen

max
Dis

T∑
t=1

N∑
i=1

M∑
j=1

(
Er∼D(r |i, j)r eal |t [logDis(r |i, j, t)]

+Er∼D(r |i, j)дen |t [log(1 − Dis(r |i, j, t))]
) (9)

Here Dis(r |i, j, t) refers to the discriminator’s prediction of the
likelihood of (r |i, j, t) being sampled from the true distribution
D(r |i, j)r eal |t . The users are numbered from 1 to N , the items are
numbered from 1 toM and time is indexed from 1 to T .

3.4 The Training Method
We use the conventional Backpropagation Through Time (BPTT)
for training RecGAN [15]. During training, the parameters of the
generator and the discriminator are alternately updated in each
iteration. The training procedure is summarized in Algorithm 1.
Here, Sд and Sd are the number of training iterations per epoch for
the generator and the discriminator, respectively. Let Θ denote all
the parameters of the generator and Φ denote all the parameters of
the discriminator. The discriminator is optimized as shown.

Φ∗ = argmax
Φ

T∑
t=1

N∑
i=1

M∑
j=1

(
Er∼D(r |i, j)r eal |t [logDis(r |i, j, t)]

+Er∼D(r |i, j)Θ∗ |t [log(1 − Dis(r |i, j, t))]
) (10)

where Φ is updated by BPTT after Θ has been updated by BPTT
(Θ∗ is the updated Θ). In each training iteration, while updating the
parameters of the discriminator, the parameters of the generator
are held constant and vice versa. The optimization problem for the
generator is as follows.

Θ∗ = argmin
Θ

T∑
t=1

N∑
i=1

M∑
j=1

(
Er∼D(r |i, j)Θ|t [log(1 − Dis(r |i, j, t))]

)
(11)

Table 1: Hyperparameter values of the GRU for RecGAN2
for all the three datasets. Gradient cap is to trim large gradi-
ents that may cause a skip over optima.

Batch Hidden Layers Learning Gradient
Size Units Rate Cap

MFP 1500 1200 1 0.001 15.0
Netflix-6m 1000 1000 1 0.0005 12.0
Netflix-full 1200 1000 1 0.001 10.0

Table 2: Analysis of baseline models and RecGAN2 on the
MFP dataset using MAP, NDCG and MRR. Higher is better.

U-AR I-AR T-SVD PMF RRN RecGAN2

MAP@3 0.36 0.36 0.38 0.37 0.37 0.41
MAP@5 0.34 0.33 0.35 0.35 0.36 0.39
NDCG@3 0.41 0.40 0.42 0.45 0.44 0.50
NDCG@5 0.40 0.38 0.41 0.43 0.43 0.47

MRR 0.34 0.34 0.35 0.38 0.40 0.42
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logged over total # items logged
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(b) Impact of the # training logs
per user for the MFP dataset

Figure 1: Performance of RecGAN 1 and 2 against various
baseline models on MFP dataset using MAP@3 demonstrat-
ing the effectiveness of RecGAN.
4 SIMULATION RESULTS
4.1 Setup
To evaluate the performance of RecGAN, we use two datasets from
Netflix Challenge [21] and MyFitnessPal [1] of explicit and im-
plicit feedback respectively. For each dataset, we compare RecGAN
against various baselines dealing with temporal aspects of RS on
several standard metrics. The baseline models are trained using
open-source code [21], and suitable hyper-parameters for each
model are identified using a grid search (Table 1). We split the
dataset into training, validation, and test set by 85%, 7.5%, and 7.5%,
respectively, while maintaining the chronological order. In the sub-
sequent tables and figures, RecGAN1 denotes our model without
the GRU modifications while RecGAN2 (used interchangeably with
RecGAN) denotes the final model with GRU modifications. All the
values reported in the tables are on the respective test sets.

4.2 MyFitnessPal Dataset
To illustrate the viability of RecGAN, we employ a diet log dataset
scraped from MyFitnessPal, which was introduced in [1]. In to-
tal, 587,187 food diary records of 9,896 users were extracted. On
average, the total number of food entries per user is 652.9. The
baseline models in this evaluation include PMF [14], TimeSVD++
(T-SVD) [12], RRN [21] and AutoRec (I-AR and U-AR) [16].

Figure 1a shows a decreasing trend as the ratio of the number of
unique items logged to the total number of items logged increases
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Figure 2: Performance of RecGAN 1 and 2 against baseline
models on Netflix dataset using MAP@3 demonstrating the
effectiveness of RecGAN.
due to a search-space increase owing to large combinations of
potentially consumable items. When the ratio is small on a 0 to 1
scale, we interpret it as an indication of routine behavior due to
static user preferences. On the contrary, users who tend to have
dynamic preference trends will make diverse choices and have a
larger ratio as they consume a diverse range of items. We postulate
that RecGAN’s robustness in handling routine and diverse choice,
as evident from Figure 1a, is due to greater modelling flexibility by
virtue of adversarial training having an implicit objective (unlike a
maximum likelihhod objective). In addition, as mentioned in Section
3, we believe that the use of ReLU non-linearity in the update gate
of RecGAN’s GRU cells boosts performance by effectively weighing
the two often competing effects of collaborative recommendation
and leveraging of personal history.

We evaluate RecGAN using MAP, NDCG and MRR in Table 2,
which shows that RecGAN has around 10% increase in MAP value
and 9% increase in NDCG value over PMF and RRN. Figure 1b shows
that RecGAN performs significantly better than PMF and T-SVD
both for users who rate a lot and those that rate infrequently. This
illustrates the effectiveness of RecGAN in addressing the cold-start
problem (data sparsity) and also in leveraging dense data when the
number of ratings per user is large.

4.3 Netflix Challenge Dataset
The Netflix Challenge Dataset [21] is one of the most popular bench-
mark datasets used to evaluate the performance of RS. It includes
100M ratings collected between 1999 and 2005 where each data
point is a tuple of user ID, item ID, timestamp, and rating.

The RMSE results shown in Table 3 indicate that RecGAN outper-
forms state-of-the-art RRN by 1.4% on 6-months and by 0.5% on the
full dataset. We selected Netflix-6months and Netflix-full to evalu-
ate performance on both a moderately sparse dataset (6-months)
and a relatively dense dataset (full). In addition, we evaluate Rec-
GAN using MAP, NDCG andMRR in Tables 4, 5 and Figure 2, which
show that RecGAN has a superior performance on all the evaluation
metrics. We did not benchmark RecGAN against IRGAN, because
IRGAN does not handle time-series data for recommendation. Fig-
ure 2a shows the relative performance of RecGAN surpasses the
baseline models by greater than 10% in most cases. As discussed
in Section 4.2, the non-linearity of ReLU in the update gate is pos-
tulated to play a significant role by being highly selective towards
remembering and forgetting past trends of users who show differing
behavior. When the past-trends are given less weight (forgotten) by

Table 3: RMSE of baseline models and RecGAN2 on Netflix
challenge dataset. Lower is better.

U-AR I-AR T-SVD PMF RRN RecGAN2

Netflix-6m 0.983 0.977 0.958 0.958 0.943 0.929
Netflix-full 0.965 0.936 0.927 0.925 0.922 0.918

Table 4: Analysis of baseline models and RecGAN2 on MAP,
NDCGandMRR for theNetflix-full dataset. Higher is better.

U-AR I-AR T-SVD PMF RRN RecGAN2

MAP@3 0.35 0.35 0.36 0.37 0.39 0.41
MAP@5 0.34 0.33 0.34 0.35 0.37 0.38
NDCG@3 0.51 0.49 0.52 0.52 0.54 0.57
NDCG@5 0.49 0.47 0.51 0.50 0.55 0.55

MRR 0.34 0.33 0.32 0.34 0.37 0.39

Table 5: Comparison of different versions of RecGANon test
data. Vanilla GRU denotes a plain GRU based RNN without
the GAN framework. Higher is better.

Vanilla GRU RecGAN1 RecGAN2
Without GAN GRU + GAN GRU + GAN

Netflix
full

MAP@3 0.33 0.40 0.41
MAP@5 0.30 0.37 0.38
NDCG@3 0.46 0.55 0.57
NDCG@5 0.46 0.53 0.55
MRR 0.34 0.36 0.39

MFP

MAP@3 0.33 0.38 0.41
MAP@5 0.30 0.37 0.39
NDCG@3 0.37 0.47 0.50
NDCG@5 0.37 0.44 0.47
MRR 0.35 0.38 0.42

the model, naturally the collaborative aspect determines the type
of recommendation.

Table 5 shows the improvement in recommender performance
with the GRUmodifications compared to Vanilla GRU. A similar per-
formance trend shown in Figure 1b is evident on Netflix dataset, as
illustrated in Figure 2b. Since GAN is an implicit densitymodel [8], it
successfully captures relevant information from both high-volume
and low-volume data distributions, respectively corresponding to
users who rate a lot and those who rate infrequently.

5 CONCLUSION AND FUTUREWORKS
In this work, we discussed the details of RecGAN, which was de-
signed to improve the effectiveness of RS by accurately modelling
temporal dynamics of user and item latent features. Our evalua-
tion results demonstrate that RecGAN outperforms all baseline
models in two different RS domains, namely movie and food rec-
ommendation. To further investigate and improve the performance
of RecGAN, we are planning to conduct in-depth studies on the
feasibility and impact of GRU modification, which was done to
capture the temporal patterns of varying granularity. In particular,
we intend to explore gate-variants of the GRU cell for use in the
RecGAN framework. In addition, we also plan to expand the frame-
work to handle auxiliary data like review texts, images and audio
signals by modifying the generator and discriminator networks to
include convolutional layers and bi-directional GRU-RNNs.
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