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Abstract—Recent studies in recommender systems emphasize
the importance of dealing with the cold-start problem i.e. the
modeling of new users or items in the recommendation system.
Meta-learning approaches have gained popularity recently in the
Machine Learning (ML) community for learning representations
useful for a wide-range of tasks. Inspired by the generalizable
modeling prowess of Model-Agnostic Meta Learning, we design a
recommendation framework that is trained to be reasonably good
enough for a wide range of users. During testing, to adapt to a
specific user, the model parameters are updated by a few gradient
steps. We evaluate our approach on three different benchmark
datasets, from Movielens, Netflix, and MyFitnessPal. Through
detailed simulation studies, we show that this framework handles
the user cold-start model much better than state-of-the art bench-
mark recommender systems. We also show that the proposed
approach performs well on the task of general recommendations
to non cold-start users and effectively takes care of routine and
eclectic preference trends of users.

Index Terms—meta-learning, cold-start problem, recom-
mender systems, deep neural network

I. INTRODUCTION

Recommendation systems (RS) are ubiquitous now and the
problem of recommending items to users is fairly common
across numerous web-platforms [1]. Content-based filtering
and collaborative filtering (CF) are two of the broad ap-
proaches adopted in most recommender systems. Content-
based filtering relies on properties (features) of each item
(for e.g. in case of movies, features can include its genre,
year of release, names of the actors, a plot synopsis, an
advertisement image etc.) [2] while collaborative filtering is
based on inferring correlations between users and items -
similar users prefer similar items and vice versa [3], [4]. Most
modern RS are based on CF in part due to its higher accuracy
and also because content-based methods require a lot of ad-
hoc features about items which may not be easily available [1],
[4].

The most popular CF method is called Matrix Factoriza-
tion [5], [6], which models each user and item by individual
vectors (of learned features) and computes a similarity score
like dot-product for inferring the preference of users for items.
These methods typically work well in the presence of large
data and are notorious for performing poorly in cold-start
recommendations [7], [8]. The user cold-start problem refers to
the task of recommending items to a new user, whose previous

item preferences are not present in the system. This is one of
the most important challenges in RS and several methods have
been proposed to tackle it [7], [9], [10]. However, they are not
successful in tackling it robustly, especially in cases of sparse
feedback - when there are large numbers of users and items
and only a few users rate (or consume) each item [7], [8].

In this paper, we tackle the problem of user cold-start in
RS, by applying model-agnostic meta learning (MAML) [11].
MAML is a general and very powerful technique proposed for
meta-learning of deep neural networks and through this work
we demonstrate its applicability in mitigating the cold-start
problem. There have been a few existing works on applying
meta-learning to recommender sustems, namely [8] and [12].
[8] considers the problem of item cold-start which has only
very specific applications like in situations for tweet / facebook
post recommendation. In most situations like movie, music,
products recommendation, the problem of user cold-start is
more acute, since there are many users who rate / consume
a new item very quickly thus providing some signals for
recommendation. Also, their method does not provide any
guarantees on the speed at which test-time computations can
be done. We benchmark our model against [8] and show that
our method requires only a few gradient updates during test-
time, for it to rapidly adapt to a new user. [12] does not
consider the cold-start problem and focuses on the issue of
distributed training and privacy preservation. Our method is a
super-set of this technique in the sense that it alleviates the
cold-start problem while maintaining the claims of privacy-
preservation described in [12].

The key insight behind the design of our framework is
to train a recommendation model offline that is suitable for
a wide range of users. When a new user, who has rated
/consumed only a few items comes along, our model requires
very few gradient updates to its parameters for it to be suitable
for recommending items to the new user. We specifically
avoid overfitting the model on the new user by formulating
the meta-learning problem through a series of tasks, wherein
each task involves inferring which items in a group of items
are relevant to a particular user [11], [13]. Through detailed
simulation on standard Movielens [14], Netflix [15], and
MyFitnessPal [16] datasets, we demonstrate the efficacy of our
method in handling the cold-start problem, while maintaining



high recommendation accuracy.

II. RELATED WORKS

Recommendation systems based on deep learning models
have become very popular in the recent past. Several deep
learning techniques like Recurrent Neural Networks [17]–
[19], Variational Auto Encoders [20], Denoising Auto En-
coders [21], Restricted Boltzmann Machines [22], Generative
Adversarial Networks [23], [24], and Convolutional Neural
Networks [25], [26] have been used to build recommender
system that perform very well on benchmark datasets and
also produce reliable recommendations in practice. However,
none of these methods explicitly tackle the cold-start problem
which is very relevant in practical recommender systems that
constantly witness new users joining the system and new items
being added to the database.

There have been some recent attempts to address the cold-
start problem in recommendations: [8] focuses on the item-
cold start problem by using a meta-learning strategy, [27]
also tackles the item-cold start problem, but adopts an active
learning framework to balance exploration-exploitation trade-
offs, [10] uses doc2vec for mitigating the cold-start problem of
new items, while [28] uses demographic information of users
for solving the user cold-start problem.

However, there are numerous drawbacks of these works: [8]
is computationally very expensive as it requires training of two
separate neural networks, the first network learns a common
representation of all items, while the second network learns a
single representation per class. Also, test-time predictions are
time consuming as the model is not compatible with recent
gradient based meta-learning approaches [11] that require only
a few gradient updates for rapid adaptation. [27] requires a
lot of additional attributes of items for solving the cold-start
problem and hence suffers from similar drawbacks of content-
based filtering. This method cannot be used in situations of
sparse feedback, where item attributes are not available. [10]
focuses on the specific task of job recommendation and is not
generalizable to other recommendation situations. The method
in [28] relies on sensitive demographic information of users,
which may not be always available for solving the cold-start
problem. In addition, the prediction model is based on simple
hand-crafted features and is not generalizable to different
tasks. The RNN-GAN based approach in RecGAN [9] has
been empirically shown to do well in the cold-start recom-
mendation problem but there is no theoretical motivation for
the same.

Meta-learning is a recently popularized paradigm for train-
ing easily generalizable machine learning models that are
capable of learning to learn. While the basic understanding
behind meta-learning has existed in the Artificial Intelligence
and Machine Learning communities for a long time [29],
[30], recent advances in deep learning has pushed research
in this front significantly. It has been used in a myriad of
fields ranging from robotics [31] to speech recognition [32].
Older approaches to meta-learning train memory-augmented
models on a plethora of tasks, by training a recurrent learner

to adapt to an ensemble of tasks [33], [34]. However, recurrent
architecture based models are bulky, and the major thrust of
modern meta-learning research has been towards low cost
gradient-based methods [35]. These methods learn a better
initialization of the meta-learner’s parameters such that they
can be easily updated through a few gradient steps to adapt to
any task [11], [36], [37].

In this work we leverage recent advances in meta-
learning [11], [13], [38] that are based on gradient descent
for rapid test-time predictions. Our method does not require
any additional information apart from user id, item id and the
ratings (or consumption information) of users on items. Our
method is task-agnostic, in the sense that it can be used for any
recommendation task and does not rely on collecting sensitive
information from users.

III. THE PROPOSED APPROACH

Inspired by other algorithm formulations in the domain
of recommender systems [8], we consider the task of rec-
ommendation to be a binary classification problem for each
user. Each item is either preferred (label 1) or not preferred
(label 0) by an user. For recommendation situations, where
each user rates items on a scale (say 0 to 10 scale), then
by thresholding (say rating value < 6 is considered not
preferred while rating value > 6 is considered preferred),
the binary classification scheme can be reliably applied. In
situations, where the feedback mechanism is not explicit via
ratings, preference can be elicited by measuring engagement,
for example in music recommendation, engagement can be
defined as the user listening to a particular song.

Let U denote the set of all users and I denote the set of
all items. The prediction task in this model is to infer the
probability of user ui preferring item vj :

P(rij = 1|ui, vj) ∀i ∈ U ∀j ∈ I (1)

Here, rij ∈ {0, 1} denotes the rating of user ui on item vj . Us-
ing this, users can be recommended items whose probability of
being preferred by the user are highest. For meta-learning, we
need to formulate the definition of each “task” in the context
of our problem. Since the aim of our meta-learning strategy
is to learn a recommendation model, general enough for all
users, that by minor fine tuning can adapt to specific users, we
define each task Tu to be the problem of recommending items
to one user given some examples of both positive and negative
examples i.e. some items preferred and some not preferred by
the user.

We parametrize the recommendation algorithm by φ and
denote it by Fφ(·). We use this to model the probability of
preference of item vj for user ui:

P(rij = 1|ui, vj) = Fφ(ui, vj) (2)

Fφ(·) in general can be any function approximator. In
the Experiments section, we consider Fφ(·) to be a linear
model, a single layer feedforward neural network and a deep
feedforward neural network and perform comparative analyses
on their performance.



Fig. 1: The overall meta-learning scheme for recommendation. The forward pass is used to update the task-specific parameters
by a few gradient updates. The backward pass is used to update the parameter of the algorithm based on the test losses from
each task. During recommendation for a new (cold-start) user, only a few gradient updates on the overall parameters of the
algorithm are required to adapt the model for recommending items to the new user.

Algorithm 1 Training: Meta-Learning for Recommendation

Require: p(T ): Task distribution
Require: Fix the value of β2: meta-step size

1: Randomly initialize θ and β1
2: while not done do
3: Sample batch B of tasks Ti ∼ p(T )
4: for all Ti in B do
5: Sample K1 data samples Di = {vj , rij} from Ti
6: Evaluate ∇φLTi(Fφ) using Di and LTi as described

in Section III-B
7: Compute gradient updates for parameters of task Ti :

φ
′

i = φ− β1∇φLTi(Fφ)
8: Sample K2 data samples D

′

i = {vj , rij} from Ti for
meta-update

9: end for
10: Update φ = φ− β2∇φ

∑
Ti∼p(T ) LTi(Fφ′

i
) using each

D ′i and LTi as described in Section III-C
11: Update β1 = β1 − β2∇β1

∑
Ti∼p(T ) LTi(Fφ′

i
) using

each D ′i and LTi as described in Section III-C
12: end while

A. Task description

Let p(T ) denote the probability distribution over all tasks.
Each task Ti generates K1 i.i.d. positive and negative items
from the dataset D for user ui (training set for Ti) and K2

i.i.d. positive and negative items (test set for Ti) . The dataset

Algorithm 2 Testing: Meta-Learning for Recommendation

Require: p(T ): Task distribution
Require: The trained value of step size β1 and φ

1: Sample batch Btest of new tasks Ti ∼ p(T )
2: //These new tasks correspond to new (cold-start) users
3: for all Ti in Btest do
4: Let Di = {vj , rij} be the set of items rated by the

cold-start
user ui (Task Ti)

5: Evaluate ∇φLTi(Fφ) using Di and LTi as described
in Section III-B

6: Compute gradient updates for parameters of task Ti :
φ

′

i = φ− β1∇φLTi(Fφ)
7: end for

D = (ui, vj , ri,j) consists of (user id, item id, rating) tuples
for every user-item pair. Task Ti corresponds to user ui. A
new user (user cold-start) is denoted by a new task T .

The problem description of each task Ti is to infer the
ratings of each of the K2 items in the test set for user ui. When
adapting the recommendation model to task Ti, the model’s
parameters φ become φ

′

i. Similar to MAML, φ
′

i is computed
from φ by a few gradient updates based on the loss function
value for task Ti.



B. Optimization for each task

Here, we describe the inner loop optimization of Algorithm
1. We first sample a batch of tasks from p(T ), and then for
each task Ti, we update the recommendation model Fφ(·) by
one or more gradient updates. The idea is to train the model
Fφ(·) to be general enough for all tasks, such that by only a
few gradient updates, it can be made good enough for a new
task Ti, which corresponds to a new (cold-start) user. The
gradient update for task Ti can be described as follows:

φ
′

i = φ− β1∇φLTi(Fφ) (3)

The above denotes one gradient update, but in practice we
found that 10 to 20 updates perform best. These implemen-
tation details are mentioned in the Experiments section. The
step size β is a hyper-parameter which we meta-learn in the
outer loop of optimization as described in the next sub-section.

Since we have formulated the recommendation problem as
binary-classification, we define the loss function LTi to be a
cross-entropy loss of the following form:

LTi(Fφ) =
∑

vj ,ri,j∼Ti

[rij logFφ(ui, vj)

+(1− rij) log(1− Fφ(ui, vj))]

As described in sub-section III-A, we sample K1 i.i.d.
positive and negative items (vj , ri,j ∼ Ti) for the above loss
function during training. We then sample K2 i.i.d. positive
and negative items (vj , ri,j ∼ Ti) for the meta-update (which
corresponds to test of particular tasks) as described in the next
sub-section.

C. Meta-optimization

The meta-optimization corresponds to updates of the pa-
rameters φ based on the test loss for all tasks Ti ∼ p(T ).
As is standard in gradient-based meta learning techniques like
MAML, the meta-objective is formalized as:

min
φ

∑
Ti∼p(T )

LTi(Fφ′
i
) =

∑
Ti∼p(T )

LTi

(
Fφ−β∇φLTi (Fφ)

)
(4)

It is important to take note of the fact that meta-optimization
is executed over parameters of the recommendation model
φ, while the objective function above is calculated using the
individual parameters φ

′

i of each task Ti. We perform the
meta-optimization by ADAM [39] or SGD [40] methods,
based on prior recommender system models that yield good
performance using these methods [1]. Any other gradient-
descent based optimization scheme can also be used here. If
SGD is used, than the gradient update step can be described
as follows:

φ = φ− β2∇φ
∑

Ti∼p(T )
LTi(Fφ′

i
) (5)

Here, β2 is the meta-step size which is a hyperparameter fixed
apriori. In addition to θ, we also meta-update the value of β1,
which is the step size for updating the gradient of each task.

β1 = β1 − β2∇β1

∑
Ti∼p(T )

LTi(Fφ′
i
) (6)

Learning the value of β1 from data in this fashion makes
our method more robust and less susceptible to getting trapped
in local optima due to improper initialization of its value.

IV. EXPERIMENTS

For notational convenience, we name our model MetaCS
(Short for Meta Learning based Cold-Start Recommender
System).

We evaluate our method on the tasks of movie recommen-
dation and food recommendation by performing experiments
on three benchmark datasets, namely Movielens 100k [14],
Netflix Challenge, [15] and MyFitness Pal [16]. Through our
experiments, we seek to answer three major research questions
(RQs):
• RQ1: How much (quantitatively) does the proposed

meta-learning based approach mitigate the user cold-start
problem in recommender systems?

• RQ2: Does the proposed method also help in improving
the recommendation performance of non cold-start users
(those that have been using the system for a long time)?

• RQ3: How well does the proposed model generalize
as compared to baselines for users that have diverse
(eclectic) or routine preferences?

To answer these questions we do a comparative analysis of
our method against state-of-the art baseline recommendation
models on all the three datasets.

A. Baselines

For comparative analysis, we consider different benchmark
models as well as variations of our proposed approach. For
our model, we specifically consider the following variations
of Fφ:
• A Linear model: Fφ(ui, vj) = σ(W0ui +W1vj + b).

Here, φ = {W0,W1, b} denote the trainable weights of
the linear regression model. The sigmoid function σ(·)
ensures that the final output is squashed in the range (0, 1)
so as to be representative of a probability value, P(rij =
1|ui, vj). This model is denoted as MetaCS-L.

• A non-linear SVM: This is a very simple non-linear
model. We use a Gaussian Radial Basis Function (RBF)
as the kernel for non-linear classification in SVM. The
specific form of this kernel is:

k(ui, vj) = exp (−γ|ui − vj |2) (7)

Here, γ > 0 is a hyperparameter tuned by grid-search.
This model is denoted as MetaCS-NN.

• Deep Neural Network: We perform analyses with DNNs
of different depths to understand the tradeoffs between
depth of the network and recommendation accuracy.
The networks are feedforward models with sigmoid
non-linearity. In the subsequent sections, we denote by
MetaCS-DNN, the DNN based model with depth and



width optimized for best performance as described in
Section IV-H.

Apart from these variations, we consider other benchmark
models, namely Probabilistic Matrix Factorization (PMF) [6],
RecGAN [23], IRGAN [24], MetaNeurIPS [8] and T-
SVD++ [41]. Although all results are reported on the test data,
for selection of network configuration only the training data
was used. In particular, we employed k-fold cross validation
with k = 5.

B. Datasets

Here we discuss the statistics of the three datasets and the
relevant pre-processing used for our experiments.
• Movielens: The Movielens 100k dataset contains 100,000

ratings for 1682 movies from 943 users for the seven
month duration from September, 1997 to April, 1998.
Here, each user has rated atleast 20 movies. Out of these,
85% users’ data are randomly selected for the training set
and the remaining users’ data is used during testing alone.

• Netflix: The Netflix Prize dataset contains 100 million
ratings from 480 thousand anonymized Netflix users for
17 thousand movie titles collected between October, 1998
and December, 2005. The ratings are integral values
within the range 1 to 5. We denote a rating value > 3
as an indication of preference (i.e. binary label 1), and
< 0 as binary label 0 in our evaluation. 85% users are
randomly selected for the training set and the remaining
users’ data is used during testing alone.

• MyFitnessPal (MFP): The MFP dataset contains
587,187 days of food diary records logged by 9,900 MFP
users from September, 2014 through April, 2015. If an
user consumed an item, we assign this the binary rating
1, while for items not consumed the binary rating is 0. In
our evaluation, 85% users are randomly selected for the
training set and the remaining users’ data is used during
testing alone.

C. Evaluation Metrics

We use the following standard metrics which are widely
used in the Machine Learning (ML) and Information Retrieval
(IR) communities:
• Precision@k: This refers to the number of correct rec-

ommendations in the top k recommendations of the
model [42].

• AUROC: This refers to the area under the Receiver
Operating Characteristic (ROC) curve [43], [44] for the
task of recommendation over all test users [42].

• Mean Reciprocal Rank (MRR): This is defined as the
multiplicative inverse of the rank of the first relevant
recommendation, averaged across all recommendation
tasks [42].

D. Setup

We implement the proposed approach by using the Pytorch
library [45] in Python 3 and use ADAM optimizer [39] for

training in the meta-udate step (Algorithm 1). The only hyper-
parameter in the model is β2, which is tuned by a grid-
search [46] with 10 points in the range (0, 1) via k-fold (where
k =5) cross validation [47] on the training set. The optimal
value of β2 for MetaCS-L, MetaCS-NN, and MetaCS-DNN
respectively are 0.5, 0.6, and 0.4. We apply dropout [48] for
effectively training the MetaCS-DNN model. The value of p
for dropout is kept at 0.6.

We implement the baseline models PMF, MetaNeurIPS,
IRGAN, RRN, T-SVD++ and RecGAN based on open-sourced
codes and details provided in the respective papers. We
evaluate these models on the three datasets and fine-tune the
hyper-parameters for each model to evaluate their optimal
performance on each dataset.

E. Cold-Start Recommendation (RQ1)

Here, during training, we exclude the data from 15% of the
users. We then evaluate the trained model on the 15% of users,
who essentially are ‘new’ to the system. Table I illustrates the
performance of different models on the test-set of new (cold-
start) users. It is evident that MetaCS-DNN i.e. our proposed
approach with a Deep Neural Network as the recommendation
algorithm performs much better than all other benchmark
models. It is interesting to note that the performance with even
a single-layer Neural Network, MetaCS-NN is much better
than other other benchmark models. This is indicative of the
fact that our overall meta-learning framework is effective in
dealing with the cold-start problem irrespective of the depth of
the function approximator used. Hence, the proposed approach
is robust.

Figure 2 shows the variation of Precision@1 with the
number of gradient updates required to achieve optimal per-
formance during testing. This corresponds to the testing Algo-
rithm 2 described in Section III. It is evident that only a few
gradient updates (less than 30) are required to fine-tune the
trained model (Algorithm 1) to adapt to a new cold-start user
during testing. This indicates that the proposed approach is
fast enough to be deployed in online interactive recommender
systems to mitigate the user cold-start problem.

F. Performance in non cold-start scenario (RQ2)

In this section we aim to establish that the proposed MetaCS
appraoch is also effective in the general recommendation
setting, i.e. in recommending items to non cold-start users who
have been using the system for a long time. For training, we
consider 85% of the data in each dataset such that some items
per user are left held-out during training. The remaining 15%
of the data consists of ratings on held-out items corresponding
to each user. The recommedation task is to infer the ratings
of users on these held-out items.

Table II illustrates the performance of the proposed model
in comparison to the performance of the baseline models. It
is evident that the proposed model, in partiular MetaCS-DNN
outperforms all the other baseline models in all the metrics.
This strongly indicates that out proposed approach does not



TABLE I: Evaluation of MetaCS against benchmark models for cold-start recommendation. All values reported are on the test
set for new users. The values of Precision@k, AUROC, and MRR lie in the range (0, 1). Higher is better for all metrics.

Dataset Metrics MetaCS-L MetaCS-NN MetaCS-DNN PMF T-SVD++ RecGAN RRN MetaNeurIPS IRGAN

MovieLens 100k

Precision@1 0.55 0.61 0.66 0.53 0.51 0.56 0.53 0.57 0.52
Precision@3 0.46 0.51 0.54 0.42 0.43 0.45 0.44 0.44 0.42

AUROC 0.85 0.87 0.92 0.86 0.80 0.85 0.85 0.83 0.79
MRR 0.49 0.58 0.58 0.45 0.49 0.51 0.50 0.47 0.46

Netflix Prize

Precision@1 0.48 0.52 0.55 0.45 0.45 0.51 0.46 0.46 0.45
Precision@3 0.38 0.43 0.46 0.36 0.35 0.40 0.40 0.41 0.38

AUROC 0.84 0.85 0.91 0.77 0.75 0.83 0.82 0.78 0.77
MRR 0.48 0.55 0.57 0.45 0.46 0.48 0.49 0.47 0.45

MyFitnessPal

Precision@1 0.45 0.51 0.56 0.43 0.41 0.46 0.44 0.46 0.42
Precision@3 0.36 0.42 0.42 0.37 0.39 0.43 0.42 0.37 0.35

AUROC 0.75 0.77 0.82 0.70 0.70 0.74 0.75 0.73 0.74
MRR 0.39 0.38 0.48 0.34 0.33 0.39 0.40 0.35 0.36

(a) Movielens 100k (b) Netflix Prize (c) MyFitnessPal

Fig. 2: Variation of Precision@1 during testing with the number of new user specific gradient updates. It is evident that only
a small number of gradient updates are required to achieve convergence to a high Precision value.

TABLE II: Evaluation of MetaCS against benchmark models for non cold-start recommendation situations. All values reported
are on the test set for held-out ratings of existing users. The values of Precision@k, AUROC, and MRR lie in the range (0, 1).
Higher is better for all metrics.

Dataset Metrics MetaCS-L MetaCS-NN MetaCS-DNN PMF T-SVD++ RecGAN RRN MetaNeurIPS IRGAN

MovieLens 100k

Precision@1 0.62 0.65 0.69 0.59 0.57 0.61 0.63 0.60 0.59
Precision@3 0.56 0.61 0.64 0.53 0.54 0.55 0.55 0.56 0.53

AUROC 0.87 0.89 0.93 0.88 0.83 0.86 0.87 0.88 0.83
MRR 0.59 0.67 0.69 0.56 0.59 0.62 0.60 0.57 0.56

Netflix Prize

Precision@1 0.51 0.54 0.59 0.48 0.49 0.51 0.51 0.50 0.48
Precision@3 0.39 0.44 0.46 0.37 0.35 0.40 0.37 0.38 0.38

AUROC 0.85 0.89 0.92 0.79 0.82 0.84 0.84 0.79 0.78
MRR 0.52 0.58 0.62 0.47 0.49 0.50 0.48 0.47 0.47

MyFitnessPal

Precision@1 0.47 0.56 0.56 0.44 0.42 0.46 0.46 0.45 0.43
Precision@3 0.39 0.45 0.48 0.35 0.35 0.39 0.41 0.40 0.38

AUROC 0.73 0.76 0.82 0.70 0.72 0.74 0.74 0.74 0.71
MRR 0.41 0.43 0.48 0.36 0.34 0.39 0.41 0.39 0.38

optimize cold-start recommendation at the cost of non cold-
start user behavior. Hence, the proposed approach performs
well both in the cold-start scenario and also in the general
recommendation setting.

G. Routine vs. eclectic users (RQ3)

In this section, we perform analyses of recommendation
accuracy with respect to different user-behaviors. It has been
well-established that some users are more routine in their
preferences, while others tend to prefer a diverse range of
items and hence are eclectic in their choices [18], [19], [23]. To
this end, we analyze the behavior of recommendation accuracy

with respect to the ratio of number of unique items rated (or
consumed) by an user and the total number of ratings (or
consumptions) of that user. We then averaage across users for
each dataset. This analysis is akin to similar analyses done in
benchmark papers on recommender systems [18], [19], [23].

Figure 3 displays a distinct decreasing trend as the ratio
of the number of unique items rated to the total number of
items rated. This should be expected because of a search-space
blowup owing to large combinations of potentially consumable
items. In this plot, routine behavior is indicated by a small
ratio on the x-axis because it represents relatively invariant
user preferences. In contrast, eclectic behavior is indicated by



(a) Movielens 100k (b) Netflix Prize (c) MyFitnessPal

Fig. 3: Variation of Precision@1 during testing with the ratio of number of unique items rated and the total items rated by
each user, avergaed over all users in the corresponding dataset. Low values in the x-axis correspond to routine users while
high values in the x-axis correspond to eclectic users.

(a) Movielens 100k (b) Netflix Prize (c) MyFitnessPal

Fig. 4: Variation of Precision@1 during testing with the height and width of the DNN used in the proposed approach MetaCS-
DNN.

a diverse consumption of items and hence a large ratio on the
x-axis. From Figure 3 it is evident that MetaCS-DNN has high
values of Precision@1 both in the low ratio regions and high
ratio regions of the plot. This indicates that the proposed model
is capable of modeling both routine and diverse preference
trends of users.

We postulate that MetaCS’s greater robustness in handling
these preference trends of users is due to the meta-learning
framework that learns to generalize well to different users.
The model learnt is general enough to be readily suitable for
a wide range of users who have different preference trends.

H. Depth and Width analysis

In this section we analyze the variation of the depth and
width of the MetaCS-DNN framework on recommendation
accuracy. If the proposed approach is truly robust, then increas-
ing the depth beyond a point should not lead to significant in-
creases in recommendation accuracy. We perform experiments
to infer whether this hypothesis is indeed true.

Figure 4 shows the variation in Precision@1 of the proposed
approach MetaCS-DNN with the depth (height) of the network
and the maximum width of any layer. It is evident that the max-
imum recommendation accuracy (in terms of Precision@1)
occurs when both the depth and the maximum width of the

network is approximately in the range 2000 to 3000. The
accuracy drops when the network becomes both deeper and
wider. This is because, since recommendation datasets are
intrinsically sparse (users consume only a small fraction of the
entire set of consumable items), a larger network is susceptible
to overfit during training and perform poorly during testing.
When the network is shallower, it does not suffice to accurately
capture the latent preference trends of users for items.

V. CONCLUSION

In this paper, we described the design of a powerful meta-
learning based recommendation model that effectively tackles
the cold-start problem. Specifically, we designed a recommen-
dation model that is general enough to be reasonable good
enough for a wide distribution of users. The trained model can
be readily utilized for a specific user by performing a small
number of gradient updates during the testing phase. Through
detailed simulation studies, we show that very less gradient
updates are required to make the trained model suitable for
a cold-start (new) user and the recommendation accuracy for
such users significantly outperforms state-of-the art baseline
models. In addition, we empirically showed that this benefit
does not come at the cost of the general recommendation
performance for non cold-start users. The next step which is



a part of our future work is to design an interactive platform
for implementing our algorithm and testing its efficacy in real-
time recommendations to physical users.
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