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Abstract—We develop a framework for incorporating expla-
nations in a deep learning based speech recognition model. The
most cited criticism against deep learning based methods across
domains is the non-interpretability of the model. This means
that the model in itself provides very less or no insight into
which features of the input are most responsible for the model’s
predictions, Layer-wise relevance propagation is an emerging
technique for explaining the predictions of deep neural networks.
It has shown great success in computer vision applications, but
to the best of our knowledge there has been no application of its
use in a speech-recognition setup. In this paper we develop a bi-
directional GRU based speech recognition model in such a way
that layer-wise relevance propagation can be suitably applied to
explain the recognition task. We show through simulation results
that the benefit of explainability does not compromise on the
model accuracy of speech recognition.

Index Terms—Speech Recognition, Explainable Deep Learning,
Bi-directional GRU, Layer-wise relevance propagation

I. INTRODUCTION

Neural Networks in conjunction with Hidden Markov Mod-
els have been used for a long time in speech recognition [1].
This interest has been renewed with the remarkable prowess
demonstrated by deep neural networks [2]-[4]. Deep Neural
Networks with their many hidden layers and multiple levels
of non-linearities are able to infer higher abstraction level
concepts compared to their single hidden layer counterparts.
The fact that speech is an inherently dynamic process merits
the use of a recurrent architecture (RNN) for temporal mod-
eling [5], [6]. There have been works involving HMM and
RNN combined and also involving direct end-to-end training
of RNN [3], [7]. The latter has shown to be more successful
of late and is the focus of our study in this paper.

Although Deep Neural Networks have been shown to per-
form very well in most domains, there is a broad consensus
about their primary demerit - lack of intuition [8], [9]. As a
result, DNN models are non-interpretable i.e. it is very difficult
to explain how the model predicts an outcome and what factors
influence it the most. It is also important from the point of view
of transparency that the model behaves as intended. Some
of the prevalent techniques in explaining DNNs exploit the
information of local gradients while other methods aim to
redistribute the model’s final prediction output (relevance) onto
the input variables via propagation backwards from the output
layer to the input layer [10]-[12]. Sensitivity Analysis (SA)

is gradient-based technique that measures relevancy of input
variables by computing their partial derivatives with respect
to the model output [13], [14]. Another, more popular tech-
nique for computing relevances is called Layer-wise Relevance
Propagation (LRP) and is based on the relevance conservation
principle. It backpropagates the total relevance of the output
to each of the inputs through local relevance-propagation laws
at each layer of the network [12].

In this work, we extend the LRP framework for a bi-
directional GRU based speech recognition model and demon-
strate the efficacy of the generated explanations through the
method of perturbations [12], [15]. Our approach uses a bi-
directional RNN (bi-directional GRU to be more specific) so
that future context is also taken into account [3], [16] . We
design this model such that LRP can be easily applied to it
via modified local relevance propagation rules. LRP has been
in use for explaining the predictions of deep architectures
in computer vision tasks [12], [17] and natural language
processing tasks [18] but not for speech recognition tasks. We
believe that with the increase in use of robust deep learning
models for speech recognition, the need for explainability i.e.
creating an interpretable machine learning approach is crucial
for transparency and this paper is an attempt towards bridging
that gap.

The rest of the paper is organized as follows: Section 2
describes the primary concepts used in this paper, namely LRP
and bi-directional GRU. Section 3 describes the specific LRP
propgagation rules used in the model and also the design of
the model using bi-directional GRUs. Section 4 presents a
detailed analysis of the quality of explanations and the type
of relevance distribution generated on a standard phoneme
recognition task.

II. PRELIMINARIES

A. Layer-wise relevance propagation

The basic principle underlying layer-wise relevance propa-
gation (LRP) is the layer-wise conservation principle, whereby
the prediction of the model f(x) (called relevance) given input
x is redistributed to each intermediate node via backpropaga-
tion until the input layer [12]. To formalize this notion, we first



Fig. 1: A GRU cell showing the update gate z, the reset gate
r and the current memory content h

note that a DNN consists of multiple elementary computational
units of the following form:
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Here, h(z) is a non-linearity like sigmoid or ReLU, ¢ indexes
a neuron for layer [, j runs over all neurons joined to neuron
7 and wj(-ifl l), SZH) are parameters of the network learned
from supervisory data. Several such computational units join
to form the entire network. The output f(x) is evaluated
in a forward-pass and the parameters are updated by back-
propagating the model error. As shown in [12], using the
same network-graph architecture, we can redistribute the total
relevance f(x) at the output to input-layer relevance using
local redistribution rules:
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Here, ¢ indexes a neuron for layer [, j runs over all neurons
joined to neuron ¢. This rule is applied in a back-ward pass
through the network starting at the output layer to produce
a heatmap which is called the relevance map It satisfies the
relevance conservation property i.e. , R ) = f(x).
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B. Bi-directional RNN (GRU)

Here, we discuss in brief the architecture of the bi-
directional RNN, in particular our focus is on bi-directional
GRU. A standard RNN computes an output vector sequence

y = (y1,.,yr), given an input vector sequence X =
(21, .., xz7) by first computing a hidden vector sequence h =
(h1, .., hy) iteratively:
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Fig. 2: A schematic diagram of a bi-directional RNN showing
all the moving parts of the model. Here, h and g denote the
forward and backward hidden states respectively and p denotes
the final output and each time-step. For a bi-directional GRU,
the functions f; and fo are replaced by GRU cells. f3 is
typically a simple function, such as a weighted average of
h and g as shown in equation 12

Here, U terms denote the weight matrices, a terms denote the
bias vectors and G is the function for the hidden layer. It can
simply be an element-wise application of a ReLU or signmoid
function or in GRUs and LSTMs, a complex combination of
many functions. In this paper, we use GRUs, where G is a
composite function described as follows:

2t = 0(Upzwt + Unzhy—1 + az) %)
re = 0(Uzrzy + Unrhi—1 + ay) (6)
gt = tanh(Uzygws + Upg (1 ® hy—1) + ay) @)
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Here, r,z,h are respectively the vectors for reset gate,
update gate and hidden state, while o is the standard sigmoid
activation function. Here, ® denotes the Hadamard product.

Now, for conventional RNNs (vanilla, GRU or LSTM based)
the context is only the past and never the future. This is a
reasonable restriction when the index ¢ corresponds to real
time and the task is to infer a future item given the history of
all previous items. However, in speech recognition, typically
transcription of whole utterances occur at once and so there
is no reason to not exploit future context. To this end, we use
a Bi-directional RNN that processes data in both directions
by leveraging two separate hidden layers. If we denote the
forward hidden sequence as h' and the backward hidden
sequence as hZ, then the output sequence y is iteratively
computed as:
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III. DESCRIPTION OF THE METHOD

A. LRP for bi-directional GRU

Similar to [3], we focus on end-to-end training of the bi-
directional GRU, wherein our model learns to map directly
from acoustic to phonetic sequences. In applying LRP, we
need to first define the local relevance propagation rules for
the model. We need to take care of multiplicative interactions
between two lower layer neurons that yield a neuron in the
next layer i.e. say zfl) = zélil) ~z§lil), where 21, 22, z3 denote
computational neurons in the network and [ denotes the layer
number. This typically occurs in an GRU based RNN, wherein
exactly one of the two neurons in the lower layer (say zélil))
is a gate with value in the range [0,1] as output of a sigmoid
activation function.

For this particular configuration, to derive the local rele-
vance propagation rule, we note that in the forward propaga-
tion, the neuron zélil) involved in the gate already determines
what fraction of the information content in the other neuron
(zél_l)) must be withheld for the final model prediction.
Hence, if Rgl) denotes the relevance of the neuron in the upper
layer, then we re-distribute it to the previous layer neurons
as Rélil) = REZ) and Rél) = 0. We apply this rule to all
the neuron-connections of the form zil) = zél_l) : zél_l) in
both the forward sequence and backward sequence of the bi-
directional GRU. For the fully connected layers (or weighted
connections of the form described in equation 1), we use
two local relevance propagation rules shown below, which are
variants of that described in equation 2:
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Here,e is a real number in the range (0,1) and S(-) denotes
the sign of the quantity within the parenthesis. Also, z;; =

(1-1)_ (1—-1,1) + _ . ..
Ty w and z; and z;; respectively denote the positive

J Ji
and negative parts of z;;, maintaining zj; +2;;2j;. Further, the
constraint « + (3 is enforced in order for the local propagation

equations to be conservative layer-wise [12], [15].

B. The Architecture

For defining the end-to-end training method, we need to
parametrize a distribution P(Y|X), where Y denotes se-
quences of phonetic output given input sequence X. To
optimize the model end-to-end through gradient descent, we
can back-propagate the log-probability of the target sequence

of outputs Z, log P(Z|X) with respect to the parameters of
the network. Let the total number of phonemes possible be P,
length of Z be Q and the length of X be R.

One of the very first methods proposed is Connectionist
Temporal Classification (CTC) [7], [19] which essentially
quantifies a distribution over phonemes for every input time-
step P(p|t) through a soft-max layer. Eventually, a distribu-
tion over alignments between input and target sequences is
computed based on the probability distribution of phonemes,
which is used by a forward-backward algorithm to compute
the posterior probability distribution P(Z|X) [7]. There have
been techniques combining RNNs trained via CTC [20] and
using RNNs for only prediction of each phoneme give the
previous ones (RNN transducer which computes a distribution
P(p|t1,t2), where t; is input timestep and ¢y is output
timestep) [21]. In this work, we use a formulation similar to
RNN transducer that is convenient for application of LRP.
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Here y:, +,(p) is obtained at the output of a bi-directional
GRU computation (as shown below), which is finally fed to a
softmax layer to obtain P(plt1,t2).
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Here, q,fht , and qfl’t , are respectively the forward and back-

ward hidden sequences obtained from the CTC network [7],
r denotes the hidden sequence of the next-step prediction
network, ¢; and ¢, denote time indices for the input and output
sequence respectively. GRU(-) denotes the the sequence of
computation steps as shown in equations (5) to (9). hfl’tz and
hi’l +, are the forward and backward hidden states obtained (for
a given (t,t2)) after the bi-directional GRU computation.

C. Training

We found that initializing weights of the proposed model
with that of a pre-trained CTC network and a pre-trained pre-
diction network yields better results than random-initalization.
The prediction network is pre-trained on the phonetic tran-
scriptions of the training data and the output layer weights
used while pre-training the networks are removed during re-
training. We quantitatively describe the difference in perfor-
mance of both these variants in Section 4 and also compare
the effectiveness of LRP based explanations via the method of
perturbations. We compare results of decoding based on both
beam search [7] and prefix search [21]. For effective training,
we employ early stopping [22], [23] and gradient clipping [23],
[24] as regularizers. In addition, we use an adaptive learning
rate (ADAM) [25] during optimization.



D. Method of Perturbations for LRP evaluation

We apply LRP to the model by application of local relevance
propagation rules for each node in the network as described
previously in this section. Now, we need a scheme for vali-
dating how effective the generated explanations are. To make
things clear, the explanations assign relevance scores to each
feature (for speech, samples of the audio sequence; for image,
pixels of the input image) of the input sequence with regard
to how relevant that feature is towards informing the model’s
final classification outcome. This in effect generates a heatmap
of relevance over the input space.

The perturbation method for evaluating the visualization of
what a DNN has learned was introduced in [15]. This method
was originally introduced for models where the input is an
image and LRP assigns relevance score to each pixel in the
input image, but it is straightforward to extend it to our case of
a speech-recognition model. The central idea is that if the value
of highly important input variables are perturbed as predicted
by the model,the decline in prediction score should be steeper
than if other less important variables are perturbed. Employing
an iterative scheme to perturb input variables, we have an
objective measure of explanation quality - steeper decline
in classification accuracy is indicative of a more successful
explanation scheme.

IV. SIMULATION RESULTS
A. Setup

We use Tensorflow rl.4 [26] on Python 3 for all rele-
vant programming. All the experiments of phoneme recog-
nition were performed on the TIMIT dataset, which is a
well-established standard. We used 18 sets that comprise of
2830 sentences by 357 speakers for training, and one set,
namely TID7 (160 sentences by 20 speakers), for testing the
model [27]. We encode the audio data with Discrete Fourier
Transform Filter Bank with 41 coefficients on mel-scale. The
primary and secondary derivatives were also encoded. The
input vectors (of size 126) were normalized to have zero mean
and unit variance in the training data. There are a total of
61 phoneme labels, all of which were used for training and
mapped to 39 classes. We run each experiment 3 times and
report the average value so as to reduce variations of random
initializations.

For comparison, we consider three schemes of explanation,
namely Sensitivity Analysis (SA) [14], ¢ LRP (based on
equation 13) and a8 LRP (based on equation 14). The models
on which we apply the three explanation schemes include Bi-
directional GRU (Bi-GRU), Bi-directional LSTM (Bi-LSTM),
Uni-directional GRU (Uni-GRU), Uni-directional LSTM (Uni-
LSTM) and CTC. Since SA and LRP are techniques for neural
networks, we limit ourselves to comparison against NN based
models for speech recognition.

B. Relevance map comparison by perturbation

We quantitatively validate the generated phoneme-level rel-
evance map obtained by SA, eLRP and aSLRP by adopting
a scheme of random perturbation. We first train all the models

and apply the SA and LRP explanation schemes. This gives
us a relevance map over the samples for each audio sequence.
Now, for perturbation, we consider the test audio data and
in decreasing order of relevance of samples, we replace
the corresponding sample by a random noise sample from
a uniform distribution. After applying random perturbation,
we re-predict on the audio data (test again on the phoneme
recognition task but with the new audio data that has been
perturbed) and note the accuracy averaged over the entire test
audio data. As expected, we observe a decrease in accuracy
with more number of perturbation steps, where in subsequent
steps, less relevant samples are being perturbed.

Figure 3 shows the decrease in accuracy for each model on
the three explanation schemes. We observe that irrepsective of
the explanation scheme, the proposed Bi-GRU approach has
the steepest decrease in accuracy with perturbation indicating
that it is the most explainable model. This is important because
explainability is a major challenge in deep learning based
models and it is preferable to use models that are most explain-
able without compromising on the accuracy of predictions.
To analyze if the gains in explainability for Bi-GRU come at
the cost of lower prediction accuracy, we compare all the five
models on various metrics in Table 2. We observe that Bi-GRU
has comparable precision and recall values (slightly higher
infact) as Bi-LSTM. Uni-GRU and Uni-LSTM have lower
accuracy on the test dataset, which is in line with previous
research on phoneme recognition [cite].

From Figure 3, we can also compare how good the three
explanation schemes themselves are. It is evident that for
af LRP, the decrease in accuracy with perturbation steps is
the steepest across all models, indicating that the relevance
predicted by a8 LRP is the most pertinent for inferring the
samples which most contribute to the task of phoneme recog-
nition. Similar results on comparison between SA and LRP
approaches on CNN architectures for document classification
were reported in [12]. It is interesting to note that this holds
even for phoneme recognition.

C. Distribution of relevance over the sentence length

Here we perform an interesting analysis of the relevance
heatmap obtained by averaging over all sentences (spoken by
all speakers) in the TIMIT dataset for each of the five models.
We divide the audio stream of each sentence into 12 equal
intervals and sum up the relevances of samples in each interval
for a particular phoneme. We then average over all possible
phonemes in the corpus and finally normalize to 1, since we
are computing a distribution. As observed in Figure 4, the
distribution is not exactly symmetric for most models and has
a peak before the center of the sentence, indicating higher
relevance of samples in the first half of spoken sentences on
an average for the task of phoneme recognition.

D. Analysis of the model accuracy

Table 1 draws a comparison between the different baseline
models and the proposed approach (Bi-GRU), with regard to
the test-set prediction accuracy of phoneme recognition on the
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TIMIT dataset. From Figure 3, it is evidence that Bi-GRU is
the most explainable in the sense that all the three explanation
schemes evaluated via the method of perturbations yield the
most-suited input space relevance map for this model. From
Table 1, we see that even for the task of phoneme recognition,
Bi-GRU outperforms the other models (albeit performs only
slightly better than Bi-LSTM). The primary inference to draw
from this observation is that explainability does not come at
the cost of prediction accuracy. This result should motivate
the development of speech-recognition models like the one
described in this paper, which are explainable in addition to
performing a high accuracy on specific speech recognition
tasks.

V. CONCLUSION

In this paper we described the design of an explainable
speech recognition model. We extend the idea of layer-wise
relevance propagation to a Bi-directional GRU based speech
recognition model and demonstrate its efficacy in generation
of explanations for the phoneme recognition task. Although
Bi-directional RNN has been in use for speech recognition
for a long time now, but we develop the Bi-directional GRU
framework in such a way that layer-wise relevance propagation
can be suitable applied to it. Layer-wise relevance propagation
has been in use for explaining computer vision tasks and to
some extent natural language tasks, but its application for
deep-learning based speech recognition tasks is innovative and



TABLE I: A comparison of various models on the phoneme recognition task in TIMIT corpus. The data has been processed as
Described in Section 4.1 and the results reported here are on the test set. Here, P denotes precision and R denotes recall. The
value of Error is in percentage. ‘Pre’ in the column heading denotes initialization with weights from the pre-trained networks
as described in Section 3.3. The rest of the models are initialized with random weights. It can be observed that the models
initialized by pre-trained weights perform better than their random initialization counterparts on almost all the metrics.

CTC Uni-LSTM  Uni-GRU Bi-LSTM  Bi-GRU  Pre Uni-LSTM  Pre Uni-GRU  Pre Bi-LSTM  Pre Bi-GRU

P@3 034 0.41 0.40 0.47 0.48 0.43 0.44 0.49 0.51
P@5 044 0.49 0.51 0.57 0.57 0.50 0.54 0.59 0.60
R@3 0.66 0.73 0.71 0.78 0.80 0.75 0.73 0.79 0.82
R@5 0.71 0.75 0.75 0.80 0.82 0.76 0.76 0.82 0.84
Error  32.6 254 242 20.5 17.2 25.0 23.8 18.7 16.3
in our opinion opens up interesting lines of research in ex- [13] Muriel Gevrey, Ioannis Dimopoulos, and Sovan Lek, “Review and

plainable speech recognition models. We also demonstrate that
the explainability introduced by applying layer-wise relevance
propagation does not compromise the accuracy in the main
task of phoneme recognition.
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