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Abstract— Learning effective visuomotor policies for robots
purely from data is challenging, but also appealing since
a learning-based system should not require manual tuning
or calibration. In the case of a robot operating in a real
environment the training process can be costly, time-consuming,
and even dangerous since failures are common at the start
of training. For this reason, it is desirable to be able to
leverage simulation and off-policy data to the extent possible
to train the robot. In this work, we introduce a robust
framework that plans in simulation and transfers well to the
real environment. Our model incorporates a gradient-descent
based planning module, which, given the initial image and goal
image, encodes the images to a lower dimensional latent state
and plans a trajectory to reach the goal. The model, consisting
of the encoder and planner modules, is first trained through a
meta-learning strategy in simulation. We subsequently perform
adversarial domain transfer on the encoder by using a bank
of unlabelled but random images from the simulation and
real environments to enable the encoder to map images from
the real and simulated environments to a similarly distributed
latent representation. By fine tuning the entire model (encoder +
planner) with only a few real world expert demonstrations, we
show successful planning performances in different navigation
tasks.

I. INTRODUCTION

Applying machine learning - and specifically deep re-
inforcement learning - to robotics algorithm development
has shown great promise recently [1]–[3]. However, state-
of-the-art methods still require a lot of experiments on the
physical robot [4], which is very expensive and possibly
even dangerous if the robot is learning a task where wrong
execution can cause harm or damage. Furthermore, there
are few guarantees that a policy learned by one robot in a
particular environment will transfer to another (even slightly)
different robot or another (even slightly) different environment.
The recently popularized theory of “meta-learning” [5]–[7]
offers a methodology for overcoming the policy transfer issue,
but at the expense of an even higher data requirement.

In practice, a roboticist has two potential tools to aid in
reducing the number of real on-policy rollouts that are needed
on the real robot. The first is a simulator. A simulator requires
development effort to build, but there are now incredible tools
to facilitate this. However, there will always be a discrepancy
between the simulator and the real world, both in terms of
the world dynamics and the perception of the environment.
This will induce a distributional shift between training and
test data which is problematic for deep learning. The second
resource that is likely readily available is off-policy rollouts
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Fig. 1: Sim-to-real transfer of navigation policies: Our method comprises
three main elements. First, a planner is trained in simulation. This process
includes a learned image encoding f s

φ
and a learned dynamics model gθ .

Second, an adversarial discriminative transfer approach is used to allow real
images to be encoded in the same way as the simulated ones. Finally, a
small amount of fine-tuning is performed on the real environment.

from the real robot. The most common example could be
data collected while the robot is being teleoperated safely by
a person.

In this work, we propose a novel procedure for combining
these two resources (simulation and off-policy data) to
efficiently train a physically embodied agent to complete
a task in the real world. In short, we use the simulation
environment to learn a policy for navigation in a meta-
learning setup and then transfer the learned policy to the
real world using an adversarial domain adaptation approach
[8]. We use as a basis for our planner the Universal Planning
Network [9] but make several improvements that make our
approach particularly well-suited to the transfer learning
scenario and show the impact of these improvements by
rigorous experiments on a real robot in the easily reproducible
Duckietown environment [10].

Also of note is that most of the approaches in the literature
related to the transfer from a simulation to a real robot that
we are aware of consider a robot agent that is fully observed
from an off-board camera. None of them consider the task
of mobile robot navigation [8], [11]–[14]. In this work, we
consider the case of a mobile robot with an onboard camera.
This is an important consideration because the robot must
now additionally implicitly infer its own state from partial
observations over time rather than having the luxury to be able
to infer its state fully from one observation. It is also more
challenging from a visuomotor policy learning perspective
since the camera itself is moving and therefore many of the
pixels will change, rather than just the agent as in other works
[9].



We also generalize the adversarial domain transfer method
for sim-to-real transfer of an end-to-end gradient-descent
based planner, where separate supervisory signals are not
available for the perception and control modules separately.
We first train using expert trajectories in simulation and then
perform adversarial transfer on the encoder’s output space to
learn mappings from the real environment that are similar to
the mappings from the simulation environment. In particular,
we claim the following contributions:
• We develop a stable and efficient planning model for

navigation through incorporation of a meta-learned
loss function, latent space regularization terms and a
stochastic forward dynamics model in the planning
objective.

• We demonstrate on a real robot that the developed policy
(encoder + planner) trained in simulation can transfer
to a real environment (by using very few real expert
demonstrations for fine-tuning) through an adversarial
transfer approach.

II. BACKGROUND AND RELATED WORKS
Our work draws inspiration from recent developments in

meta-learning and sim-to-real policy transfer.

A. Meta Learning
Meta-learning models are trained by being subjected to a

variety of tasks in training and are then tested in their ability
to learn new tasks. The concept is not new [15], [16], but has
become increasingly relevant in modern deep reinforcement
learning and imitation learning algorithms [5], [17]–[23].
Model-Agnostic Meta Learning (MAML) [5]–[7] provides
a framework for rapidly adapting gradient-based planners
to different (new) tasks by performing a few gradient steps.
On a high level, our approach is inspired by MAML in the
sense that we have a two-stage computation through gradient
descent during training. The inner stage computes a plan given
the planner, while the outer stage updates the parameters of
the planner, including the weights of the neural network used
as the inner stage loss function.

1) Universal Planning Networks: The UPN [9] framework
considers the problem of finding a plan ât:t+T given an initial
image ot and a goal image og as inputs. Similar to MAML
it employs a two-tiered approach: 1) optimize the trajectories
(sequence of actions) with gradient decent given a planner
(inner loop) and 2) optimize the representations in the planner
(outer loop) using expert trajectories. The planning module
consists of a forward dynamics model gθ (a fully connected
neural network) and an encoder fφ (a convolutional neural
network) with θ and φ being neural network parameters
respectively, which are learned in an end-to-end manner.

In each iteration, for a fixed planning horizon T , the current
and goal images are encoded into a latent space X :

xt = fφ (ot)

xg = fφ (og)
(1)

The latent representation at the end of the horizon, xt+T+1
is calculated by recursively applying the learned forward
dynamics model and the current estimate of the actions,
ât...t+T in the planned trajectory:

x̂t+1 = gθ (x̂t , ât) (2)

starting from the latent encoding of the initial image xt . The
inner loop planning loss is then calculated as the discrepancy
between the direct encoding of the goal image and the latent
space estimate generated by propagating the initial image
encoding through the learned dynamics model T times.

L
(i)
plan = ||x̂

(i)
t+T+1− xg||2 (3)

This loss is backpropagated to find the best actions given the
encoding parameters φ and the dynamics model parameters
θ . This process repeats until convergence (gradient descent).
Once a trajectory has been converged upon, it is compared
with an expert trajectory, a∗t:t+T , using an outer-loop imitation
loss:

Limitate = ||ât:t+T −a∗t:t+T ||22 (4)

This loss is back-propagated into the planner and used
to update the parameters of the planner φ and θ . This
process continues over a batch of expert demonstrations
until convergence in the hope that the resulting latent
space encoding and dynamics model parameters will be
automatically learned.

This setup is elegant since it is able to learn a latent
encoding without wasting additional optimization effort on
reconstruction as is the case in a variational autoencoder setup
such as DARLA [24]. However, in our experience it suffers
from the following shortcomings:

1) It is data inefficient and requires a lot of expert
trajectories to train,

2) The inflexible planning loss constrains the learning
process because it is not necessarily suitable for every
task, since what is a good representation to model state
transitions may not be best to measure discrepancy to
the goal,

3) While it is able to adapt to new dynamics models (this
is shown in an RL context in [9]) it is not able to adapt
to changes in the perceptual environment, which limits
its ability to transfer from a simulator to a real robot,

4) The learned dynamics model lacks the robustness to
be used on a real robot since it is devoid of any notion
of stochasticity.

In Sec. III we detail how our method overcomes these
shortcomings.

B. Sim-to-Real Transfer
The goal of sim-to-real transfer is to use simulated or

synthetic data, which are cheap and easy to be collected, to
partially or fully replace the use of real-world data, which
are expensive and time consuming to obtain [25]–[27]. The
main challenge in effective sim-to-real transfer is that there
are aspects of reality which cannot be modelled well in the
simulation environment [28]. Hence, a model that has been
trained in simulation cannot be directly deployed in the real
environment since there is a distributional shift between
the test data and the training data [29]. One approach to
close the “reality gap” is by matching the simulator to
physical reality via dedicated system identification and
superior-quality rendering [30]–[32]. However this is very
expensive in terms of development effort and, not very
effective based on past results [33]. Apart from this, there
are broadly two categories of approaches to resolve the



aforementioned issue, 1) learning invariant features and 2)
learning a mapping from simulation to real.

1) Learning Invariant Representations: Domain
randomization [12], [25]–[27], [34]–[36] bridges the
reality gap by leveraging rich variations of the simulation
environment during training. The hope is that by adding
random variability in the simulator, the real data distribution
will be within that of the training data. However, recent
results have only been able to successfully use domain
randomization for relatively simple tasks like object
localization [27] and robotic grasping [37] with no use cases
in navigation to the best of our knowledge. Additionally,
which parameters to randomize and to what degree is done
heuristically and requires significant testing and tuning.

2) Learning the Mapping between Simulation and Real: A
second option is to explicitly learn the relationship between
the simulated and real data [38]. Then, a policy trained on the
simulator can be executed in the real world by pre-processing
the real data to make it seem like simulated data. A recent
approach [39] proposed a Simulated+Unsupervised (S+U)
learning method which utilizes unlabeled real data to learn a
model in order to improve the performance of a simulated
agent.

Another approach, namely “Adversarial Discriminative
Domain Adaptation” [40] has the key advantage over prior
methods of not requiring pair-wise labeled data from the two
domains. All that is required is batches of data from each
domain and labels corresponding to their ground truth domain.
The GAN approach builds a representation that attempts to
fool a discriminator as to the true origin of the data thereby
learning a mapping from one domain to the other.

This was recently applied to sim-to-real transfer for a
robotic table-top-reaching task with a 7 DoF arm [8]. The
authors show the ability to effectively transfer the learning of
visuomotor policies from a simulation environment to the real
setup by the use of very few real expert demonstrations for
fine-tuning. The architecture consists of two key components:
• A perception module that estimates the object position

x∗ from a raw-pixel image I (based on a VGG16 neural
network [41]);

• A control module that estimates the optimum joint
velocities v given the position x∗ and joint angles q.

The source encoder is first pre-trained using labelled
simulated data of images and corresponding target positions.
Then, the source encoder (Es) is locked and a reference target
encoder (Er) is trained through images sampled from both the
simulation (Is) and the real (Ir) setup. They use an adversarial
loss LAd = LD + γLE where

LD =− 1
2m ∑

j
[logD(Es(Is

j))+ log(1−D(Er(Ir
j)))]

LE =− 1
m ∑

j
logD(Er(Ir

j))
(5)

Here, D denotes the discriminator and γ is a balancing
weight. In practice the authors use a supervised loss over
real expert demonstrations in addition to the adversarial loss
for successful transfer. This method is appealing since it

provides a principled way to transfer learned policies from
simulation to the real robot with limited and not necessarily
pairwise matched labeled data from the real robot. However,
the authors explicitly consider the output of the perception
module to correspond to object position and formulate the
control module to map from positions to velocities. Letting
the image encoding of the perception module correspond to
position restricts the wide scope of latent features that can be
encoded, and hence we do not explicitly force the encoding
in our model to correspond to one particular tangible attribute
(like position). However this introduces a difficulty in sim-to-
real transfer because there is no ground-truth supervision for
the perception module alone. In our proposed method, we train
end-to-end in simulation and hence require no ground truth
perceptual data, only a select number of expert trajectories
to be used in the outer-loop imitation learning loss.

III. METHOD
The basis of our approach is inspired from two areas of

recent rapid development: meta-learning for planning, and
discriminative policy transfer. An overview of the approach
is shown in Fig. 1.
A. Proposed End-to-End Planner

We build our planner, which consists of the encoder fφ ,
the forward dynamics model gθ and the planning loss Lplan
in a UPN-style framework.

1) Stochastic Forward Dynamics Model: In UPN [9], the
forward dynamics model gθ is fully deterministic, which
makes the model inappropriate when applied to a real robot,
since transitions are not deterministic (especially if the next
state conditioned on the previous state is not unimodal), as
well as making the model brittle to slight perturbations in
the initial and/or goal image. We capture this intuition for
making our model robust by explicitly encoding noise in the
dynamics model:

x̂t+1 ∼ gθ (x̂t , ât ,ε) (6)

where ε is sampled from a zero-mean, fixed variance normal
distribution.

2) Learning the Planning Loss Function: Most existing
approaches [5], [9], [37], [42] use a fixed loss function,
like squared error loss or Huber loss [9]. We alleviate the
modelling bias introduced by a fixed loss function by adopting
one with tunable parameters. In particular, we use a Multi-
Layer Perceptron (MLP) as the planning loss, the parameters
of which are “meta-learned” through the outer loop imitation
loss. Our new inner loop planning loss becomes:

LMLP = MLP(x̂g,xg) (7)

The intuition behind using an MLP as the loss function is to
let the model suitably adapt the loss function to any particular
task by tuning the parameters of the MLP.

3) Faster Convergence Through Regularization: The orig-
inal UPN framework is relatively data inefficient since all
information about the latent encoding parameters and the
dynamics model must be learned from the outer loop imitation
loss. We propose two forms of regularization to the model
to alleviate this.

The first is a “smoothness” regularization which enforces
the successive latent states to be “close” to each other in latent



Algorithm 1 Sim-to-Real Transfer of Navigation Policy

Randomly initialize θ ,φ ,ζ
f s
φ

, gs
θ

, MLPs
ζ

= TRAINING(asim∗
t:t+T , β1, β2, β3, α , np)

f t
φ

= TRANSFER({oreal}, {osim}, f s
φ

, k)
φ ←− f t

φ
,θ ←− gs

θ
,ζ ←−MLPs

ζ

fφ , gθ , MLPζ = TRAINING(areal∗
t:t+T , β1, β2, β3, α , np)

space. Since, the transition from x̂t to x̂t+1 occurs as a result
of action ât on a physical robot (i.e., x̂t+1 ∼ gθ (x̂t , ât ,ε)) we
should expect that, in order to have a smooth trajectory, the
“distance” in latent space between subsequent state encodings
should be small. We enforce this by adding the the following
term to the planning loss:

Lsmooth =
t=g

∑
t=t
||x̂t − x̂t+1||p (8)

where || · ||p denotes the Lp norm. Note that since gθ (x̂t , ât ,ε)
is a distribution, x̂t is a sample from that distribution.

The second type of regularization enforces “consistency”.
The original planning loss enforces a notion of consistency
but only at the terminal state xg. By consistency, we mean
that the error represents the discrepancy between the terminal
latent states calculated two ways: 1) by encoding the goal
image and 2) by encoding the initial image and propagating
the latent state through the dynamics model T times. However,
in practice during training we have the entire sequence
of images. Therefore, we can enforce consistency at each
timestep regardless of the policy being executed to generate
the data. This is achieved by considering the two pathways
that we can use to arrive at the same latent state: 1) encode
image at time t and propagate through the dynamics model
and 2) encode the image at time t +1. More precisely, we
enforce that samples from gθ ( fφ (ot),at ,ε) and fφ (ot+1) are
“close” to each other at every time-step t by adding:

Lconsist =
t=g

∑
t=t
||gθ ( fφ (ot),at ,ε)− fφ (ot+1)||p (9)

to the planner loss function. Here, the first term is a sample
from the respective distribution in each rollout. Note that
here, at is sampled to be either the expert action (with a
probability of 80%) or the current action (being optimized) at
time-step t and ot+1 is the observed image at time-step t +1
after the agent takes action at in the state with observation
ot . An overview of the training process is outlined in Alg. 2.

B. Policy Transfer to the Real Robot
Although a gradient-descent based planning algorithm is

very general and powerful in the sense that it can be applied
to different tasks, training through imitation learning is data
intensive and requires many demonstrations, something which
is not always possible to collect in a real environment. Hence,
training in simulation and fine-tuning in the real setup is
a promising direction for using such architectures in real
robotic tasks like navigation and grasping. However, it is not
immediately evident if a sim-to-real transfer architecture can
be applied in this framework because the latent encoding
does not have an easily interpretable physical meaning.

We propose a method based on pre-training in simulation,
using an adversarial discriminative approach for policy

Algorithm 2 Planner Training

procedure TRAINING(a∗t:t+T , β1, β2, β3, α , np)
for number of training iterations do

Sample a batch of demonstrations ot ,og,a∗t:g
Take Randomized guess for the optimal plan â(0)t:g
for i from 0 to np−1 do

Compute xt = fφ (ot), xg = fφ (og)
for j from 0 to T do

x̂(i)t+ j+1 = gθ (x̂
(i)
t+ j, ât+ j

(i),ε)
end for
Compute: Lplan = LMLP +Lsmooth +Lconsist

Update: ât:t+T
(i+1) = ât:t+T

(i)−α∇ât:t+T
(i)L

(i)
plan

end for
Compute Limitate = ||ât:g−a∗t:g||22
Update θ := θ −β1∇θ Limitate
Update φ := φ −β2∇φ Limitate
Update ζ := ζ −β3∇φ Limitate

end for
return fφ , gθ , MLPζ

end procedure

Algorithm 3 Sim-to-Real Transfer

procedure TRANSFER({oreal}, {osim}, f s
φ

, k)
for number of training iterations do

for k steps do
Sample a batch of N real images oreal

1:N
Sample a batch of N sim images osim

1:N
Update Discriminator D : ∇θd LD

end for
Sample a batch of N real images oreal

1;N
Update Generator (Target Encoder) f t

φ
by ascending

its stochastic gradient: ∇θd LG
end for
return f t

φ
// Target encoder

end procedure

transfer, followed by a fine-tuning approach on the real robot
as detailed in Alg. 1.

1) Pre-training in simulation: Expert trajectories are very
inexpensive to obtain in a simulation (once the simulator
has been built) and therefore this represents the bulk of our
training phase.

2) Adversarial transfer of encoder from sim-to-real: Once
we have a policy that is performing well in the simulator, we
aim to learn an encoder that generates the same distribution
of latent states over real images as the pre-trained encoder. To
achieve this we begin by freezing the source encoder’s learned
weights. We feed in images sampled randomly from the
simulation environment and execute one forward pass through
the source encoder to yield a latent embedding xsim = f s

φ
(osim)

where f s
φ
(·) is the simulator encoder. We initialize the target

encoder with the same weights as the source encoder but do
not freeze them (i.e. the weights of the target encoder are
trainable). The target encoder is fed images randomly sampled
from the real environment and we execute one forward pass
to yield a latent embedding xreal = f t

φ
(oreal) where f t

φ
(·) is

the real robot encoder.
We then use a three-layer feedforward neural network



as a discriminator (D) to distinguish between which latent
representations are obtained from images of simulation and
which are obtained from real images. This is an adversarial
learning framework where the generator is the target encoder
that tries to generate latent representations from real images
which are close to the representations of the trained source
encoder on images from simulation. The discriminator and
generator losses used in Alg. 3 are:

LD =− 1
2N

N

∑
i=1

[logD( f s
φ (o

sim
i )+ log(1−D( f t

φ (o
real
i ))]

LG =− 1
N

N

∑
i=1

[logD( f t
φ (o

real
i )]

If the process of adversarial domain transfer is perfect, then
without changing the rest of the architecture, the forward
dynamics model gs

θ
and MLP loss function MLPs

ζ
pre-trained

on simulation affixed to the target encoder f t
φ

should be able
to perform well in the real environment. In practice, due
to imperfect convergence of adversarial training, we need
to incorporate fine-tuning with some expert demonstrations
from the real environment. This is exactly similar to the
pre-training phase, except for the fact that expert trajectories
are from the real environment.

IV. EXPERIMENT DESIGN
To test the performance of our architecture, we designed

two experiments on the Duckietown [10] platform: lane
following and left turn. For each test run, we selected different
initial poses for the Duckiebot, with each pose being a pair
of initial position and initial facing angle.

In simulation, for the lane following test, we select the
initial angles from the range -30o to 30o and the initial
positions from the center of the right lane to the center of the
left lane. For the left turn test, the initial angle ranges from
-30o to 30o and the initial position ranges from the center of
the right lane to the broken yellow (middle) line. We randomly
generate a number of initial poses in the above mentioned
ranges during testing and a number of expert trajectories of
different horizon lengths during training.

In the real environment we uniformly discretize the space
of initial poses. For lane following, there are three initial
positions, namely center of the right lane, left lane and yellow
line and seven values of initial angles (-45o, -30, -15o, 0o, 15o,
30o, 45o). For the left turn test, there is one intiial position,
namely the center of the right lane and five initial angles
(-30, -15o, 0o, 15o, 30o). See Figure 2.

A. Dataset Collection
The dataset for training consists of expert trajectories in

simulation, expert trajectories in the real setup and images
from both the simulator and real setup (sim/real frame data)
in any context. The expert trajectories in both sim and real
are collected with a joystick. Each trajectory consists of a
pair of actions and corresponding observation frames from
the agent’s point of view.

The sim/real frame dataset contains a list of image-label
pairs, where the label corresponds to the domain (either
sim or real). The images from the simulator were collected
using basic domain randomization with respect to camera

Fig. 2: The Duckietown Environment: (a) The initial pose setup for the
Duckiebot in the real Duckietown environment. (b) A demonstration of
distance measurement. (c) An overview of the Duckietown environment.

height, angle, field of view, floor color, horizon color and
pose of the robot. The real images were collected though the
front camera of a physical Duckiebot by ensuring capture of
different facing angles and positions on the road.

B. Training

For all experiments, we train the model in a curriculum
learning style during the pre-training (in sim) and fine-tuning
(in real) phases. In practice, this means that while sampling
trajectories for each batch, we consider those with shorter
horizon lengths before the longer ones and the lane-following
trajectories before the turning ones.

V. RESULTS

The performance of the framework has been measured
by four metrics: outer loss (Limitate), inner loss (Lplan),
average reward per time step (simulation only), and
average completion rate (fraction of the total distance
to goal travelled by the Duckiebot before falling off the
road averaged over all test instances with the same initial
conditions). The reward function is given by

r =

{
v ·dir−10|dc|, if on the right lane
0, otherwise

where v is the velocity of the Duckiebot, dir is the moving
direction of the Duckiebot and dc is the distance of the
Duckiebot away from the right lane center.

A. Convergence Analysis of the Planner Module

Here we analyze the efficacy of the key components of
the planner module proposed in Sec. III. Fig. 3a depicts the
convergence of the models during pre-training in simulation
through the training procedure in Alg. 2. Fig. 3b shows the
convergence of the models during fine-tuning by the use of
real expert trajectories. It is evidenced from both the figures
that Model A, which is our final model incorporating all
the components described in Sec. III has a much steeper
convergence rate and also converges to a better optimum.



(a) Model convergence on simulator data (b) Model convergence on real data

Fig. 3: Evaluation of various baselines models on Duckietown simulation
(a) and real (b) environment showing the convergence of outer loss as
training progresses. (Model A denotes our final planner, B is the version
without Stochasticity, C is the version with Huber Loss instead of MLP
as the planning loss, D does not incorporate regularization, E is D sans
Stochasticity, F is C sans Regularization, G is C sans Stochasticity and H is
the vanilla UPN [9] planner).

(a) Average Reward (LF) (b) Average Reward (LT)

(c) Completion Rate (LF) (d) Completion Rate (LT)

Fig. 4: Evaluation of the average time step reward and average completion
rate on Duckietown Simulator (Notation: L - left lane, R - right lane; −2
- (-30o, -15o), −1 - (-15o, 0o), 1 - (0o, 15o), 2 - (15o, 30o); LF - lane
following; LT - left turn).

B. Evaluation on Duckietown Simulation Environment

We now evaluate the performance of our model after pre-
training in simulation through the training procedure described
in Sec. IV-B. The results of the lane following test are shown
in Fig. 4a and Fig. 4c and that of the left turn test are
highlighted in Fig. 4b and Fig. 4d. We observe that Model A
significantly outperforms the baseline UPN model. We claim
that this improvement in simulation is a crucial stepping stone
for effective sim-to-real transfer.

C. Evaluation of the Inner-Loop Loss Function

In our planner, we have a MLP as the inner-loop loss
function whose parameters are learned in the outer imitation
learning loop as described in Sec. III-A.2. After training the
model, we fix the parameters of the MLP inner-loss and test
for its value in different positions on the road. Intuitively,
the value of the loss inferred by this function should he high
near the center of the lane and should increase away from

Fig. 5: Evaluation
of the inner loop
loss function on
Duckietown Simulator.
The evaluation is of
Model A that has been
trained on horizons
of different lengths
from 30 to 300 via
curriculum learning.

Fig. 6: Evaluation of the performance of
adversarial transfer in terms of loss as a
function of the number of real and simulated
images used in training, after pre-training in
simulation with 2000 expert demos.

(a) Average completion rate on the lane following
test (real).

(b) Average completion rate on
the left turn test (real).

Fig. 7: Performance of our method on the real robot (Notation: L - left lane
center, M - Middle line center, R - right lane center;)

the center. Empirical evaluations in Fig. 5 justify that the loss
function conforms to our intuition about its desired behavior.

D. Efficacy of the Transfer to the Real Robot
After pre-training in simulation and performing adversarial

domain transfer, we fine-tune the model in the real setup.
The architecture used is our final Model A. The results of
the lane following test are shown in Fig. 7a and that of
the left turn test are highlighted in Fig. 7b. We use domain
randomization [12] as baseline against which we compare
our sim-to-real transfer architecture1.

It is interesting to note that our model performs quite
well (> 50% average completion rate) even for the most
difficult case of navigation starting from the center of the
left lane with an initial facing angle of -45o. Also of note
is the fact that the performance on left-turn is quite good
for our model. This is indicative of the curriculum learning
framework, which first learns lane following followed by
turning (in training) yielding noticeable gains during testing.
We also evaluated how many real and simulated images were
required for convergence of the adversarial loss, with results
presented in Fig. 6, and also how many real trajectories were
needed to achieve an equivalent outer-loop loss with and
without our transfer learning pipeline, with results presented
in Table I. From these two results, we see that our method
preferentially uses “off-policy” data to save the amount of
on-policy expert trajectories needed on the real robot.
TABLE I: The number of real trajectories required in the proposed sim-to-real
transfer compared to training the model directly without sim-to-real.

Outer loss 0.10 0.15 0.20 0.25 0.30 0.35

No. of Real Trjs (Direct) 1250 1150 950 750 500 200

No. of Real Trjs (Transfer) 230 180 120 75 50 25

VI. CONCLUSION
We present a framework for gradient-based planning

and transfer from sim-to-real. We demonstrated through
experimentation that the proposed method achieves significant
performance gains in the real environment by learning a robust
policy in simulation followed by a successful adversarial
transfer.

1For a video of the real robot results please refer to this link

https://www.youtube.com/watch?v=KhSUWapOgXg
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