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Abstract— We pursue the goal of developing robots that can
interact zero-shot with generic unseen objects via a diverse
repertoire of manipulation skills and show how passive human
videos can serve as a rich source of data for learning such
generalist robots. Unlike typical robot learning approaches
which directly learn how a robot should act from interaction
data, we adopt a factorized approach that can leverage large-
scale human videos to learn how a human would accomplish
a desired task (a human ‘plan’), followed by ‘translating’ this
plan to the robot’s embodiment. Specifically, we learn a human
‘plan predictor’ that, given a current image of a scene and a
goal image, predicts the future hand and object configurations.
We combine this with a ‘translation’ module that learns a plan-
conditioned robot manipulation policy, and allows following
humans plans for generic manipulation tasks in a zero-shot
manner with no deployment-time training. Importantly, while
the plan predictor can leverage large-scale human videos for
learning, the translation module only requires a small amount
of in-domain data, and can generalize to tasks not seen during
training. We show that our learned system can perform over 16
manipulation skills that generalize to 40 objects, encompassing
100 real-world tasks for table-top manipulation and diverse
in-the-wild manipulation. https://homangab.github.io/hopman/

I. INTRODUCTION

A central goal in the rapidly growing area of robot learning
is to develop generalist robots capable of performing a
plethora of everyday manipulation tasks in diverse unseen
real-world scenarios. In addition, to be practically useful,
they should be able to accomplish these tasks out of
the box when deployed in unseen scenarios. Towards this
goal, our work pursues learning diverse core skills like
manipulating articulated objects, picking, placing, scooping,
pouring, twisting, stacking, and swiping, among others that
humans can effortlessly perform during everyday interactions.
Moreover, we want these skills to be generalizable to unseen
scenes with new objects, and be executeable in a “zero-shot
manner” i.e. without deployment-time training.

An unsophisticated way to attempt this goal is to collect
a gigantic robot interaction dataset for imitation learning.
Albeit simple, this is not scalable for diverse real-world
generalization because it would require collecting data not
just for different tasks but for interaction across different
objects with different skills, and is bottle-necked by physical
access constraints. Indeed, recent approaches that attempt at
developing diverse manipulation capabilities require years
of on-robot data collection [1], and are still largely limited
to picking, placing, and pushing skills. Our solution is to
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Fig. 1. A subset of different manipulation behaviors generated by our
framework HOPMan . By learning task-agnostic human-plan prediction and
robot-action translation models, our system can interact with generic objects
and execute diverse skills e.g. unrolling, scooping, pouring, re-orientation,
articulated object manipulation, etc. Videos are in the supplementary website
https://homangab.github.io/hopman/

factorize the task of learning a generalizable policy into 1)
learning an interaction plan that captures changes that the
object and the manipulator can undergo, 2) translate the plan
into actions that can be executed on a robot. Our key insight
is that the first module can leverage non-robot data, and
in particular large passive datasets of human videos on the
web. Given this human-interaction-plan, acting in the real
world reduces significantly in complexity as we only need to
instantiate the human plan in a robot’s context as robot-actions.
This translation model can be trained with limited paired
human-robot data and generalizes to objects and scenarios
that are unseen in the robot data since the human-interaction
plan generalizes by virtue of diverse training.

Some prior robot learning approaches have also investigated
leveraging out-of-domain (human) data, primarily for learning
visual representations [2, 3, 4] and robotic affordances [5,
6, 7, 8]. However, these approaches require a lot of further
robot demonstrations for policy learning and typically also
require a lot of deployment-time training. Other approaches
learn task-specific action priors [9, 10] for a few categories
of manipulation tasks, with separate policies for each task.
Compared to these, our approach of factorizing the overall
policy can enable zero-shot manipulation over a range of
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Fig. 2. HOPMan consists of a human-interaction-plan prediction model (left), and a robot-action translation model (right). Given an initial image of a
scene X0 and a goal image Xg , a diffusion model hallucinates plausible future hand and object masks M1:K . These predictions along with current RGB
observations of the scene Xt go as input to a translation model (instantiated as a closed-loop policy π(·)) that outputs robot actions at for executing the
motions on a robot. Additional details on the approach are in section III.

diverse tasks, with a single policy that can be appropriately
goal-conditioned and doesn’t require any deployment-time
training.

We consider semantic masks of hands and objects as a
structured space for defining the human-plan, since it abstracts
out task-irrelevant details of the environment. Given an image
of a scene and a goal image, we train the prediction model
to predict the human-plan as plausible future hand and object
masks. We train this model across clips in diverse passive
videos on the web and show that it generalizes to new
scenes in our real-robot experiments. In order to transform
the predictions to a physical embodiment’s robot-actions ,
we train a translation module on a small amount of paired
data (∼600 trajectories). We abbreviate our framework as
HOPMan (Hand Object Plan for robotic Manipulation).

Through experiments on a set of 100 tasks, involving 16
skills and 40 objects, we show HOPMan can help distill
information about manipulation from passive human videos
on the web to physical scenes in a robot’s workspace, as
evaluated through generalization across five different axes. In
summary, we make the following contributions:
• Present an approach for learning goal-conditioned pre-

diction of hand-object interaction plans using everyday
interaction videos.

• Develop a framework that casts robot manipulation as
translation of (predicted) hand-object plans, thus allowing
the use of easily available human videos for learning diverse
manipulation.

• Demonstrate the overall framework across 100 manipulation
tasks involving 40 objects with 16 skills, while evaluating
generalization in a structured manner for table-top manipu-
lation and in-the-wild manipulation in unseen scenes.

II. RELATED WORKS

Understanding human interactions from videos. Several
recent approaches in computer vision have focused on
understanding hand-object interactions in diverse everyday
settings [11, 12, 13, 14, 15, 16, 17]. Specifically, prior work
has investigated learning hand pose estimation [18, 19, 20,
21, 22, 23, 24, 25, 26, 27], object pose estimation [28,

29, 30, 31, 32], interaction hotspot prediction [5, 6, 33],
prediction of plausible hand grasps [34, 35], and activity
understanding [36, 37]. Our human-interaction-plan prediction
module is inspired by these developments, where we focus on
learning motions of hands and objects from passive human
videos that are directly relevant for manipulation, and abstract
out task-irrelevant visual details through semantic masks.
Learning Visual Representations for Manipulation. A
growing body of recent works learn mappings from visual
observations to robot actions for performing tasks [38, 39, 40].
One common way of using data beyond robot interactions
for efficient learning is to pre-train the visual representations
which serve as backbones for the policy models [2, 3, 4, 41,
42] with passive human videos [14, 43] and image data [44].
However, these methods still crucially rely on a lot of in-
domain robot data or deployment-time training, and are
restricted to learning task-specific policies.
Learning Affordances. Towards learning structure more
directly related to manipulation, some works try to predict
visual affordances in the form of where to interact in an
image, and local information of how to interact [6, 8, 33, 34].
While these could serve as good initializations for a robotic
policy, they are not sufficient on their own for accomplishing
tasks, and so are typically used in conjunction with online
learning, requiring several hours of deployment-time training
and robot data [7, 8]. Our work differs from this in terms of
predicting an approximate motion of how a human hand and
the object is likely to move for the entire trajectory (not just
at/near contacts unlike affordances) and is zero-shot in terms
of not requiring any deployment-time training.
Manipulation without deployment-time training. With a
goal similar to ours of using human videos to learn models
that can be directly deployed, some approaches leverage
curated data of human videos [9, 10] for learning task-specific
policies (instead of a single model across generic tasks).
Others that train a single policy across tasks require large
in-domain perfectly aligned human-robot data [45, 46, 47]
and are not capable of leveraging passive web data. Perhaps
most closely aligned with ours, Bharadhwaj et al. [48] learn
(human) action trajectories from passive web videos and



leverage a heuristic to convert these to robot trajectories.
However, their actions are restricted to simple coarse open-
loop motions that do not involve grasping, and hence can’t
exhibit diverse skills. Compared to these, our framework
utilizes diverse large-scale passive human video data on the
web, combined with a small amount of in-domain robot data,
with a single model capable of tackling different manipulation
tasks zero-shot.

III. HAND-OBJECT PLAN FOR ROBOTIC MANIPULATION

We aim to develop a robot manipulation system that can
accomplish diverse skills zero-shot with a plethora of different
unseen objects in the real world. Our key insight is to leverage
a factorized policy model (see Fig. 2) that consists of two
stages: a) a goal-conditioned human plan prediction model
that predicts future masks for plausible hand and object
motions, and b) a translation model that learns to transform
the corresponding predicted plans into actions that can be
executed with a robot for real-world manipulation. We show
how we can train the human-plan prediction model on diverse
passive human videos from existing large scale datasets, and
use it for predicting plausible plans in a robot’s environment.
In contrast, the translation model can be trained with a small
amount of paired human-robot data. This factorization allows
us to generalize to scenarios that are unseen in the robot data,
because the human-interaction-plan model with its diverse
training generalizes well, and the translation model is tasked
with a simpler job of converting these plans to the robot’s
embodiment.

A. The Human-Plan Prediction Model

Instead of predicting the future in the image space, we focus
on predicting only the motion of the human hand and the
object being interacted with, in terms of respective semantic
masks. We enable this prediction through a diffusion model
trained on diverse human videos on the web. For each video
in the training data, we extract hand-object masks for each
frame. Let M1:K denote the respective mask frames from
time steps 1 to K. For simplicity we consider each mask
frame to be an image, where all the hand pixels are green,
all the object pixels are red, and the rest of the pixels are
black. Let X0 denote the first frame (RGB) of the video, Xg

denote the last frame (RGB) of the video, which will act as
a goal frame, and V(X0,Xg) denote the prediction model.
In the forward diffusion process, all the mask frames M1:K

Fig. 3. Detailed illustration of a training pass through the future prediction
model. This is a diffusion model, with a U-net that predicts per-frame noise
at each step p of the diffusion process. Additional details on the model and
training are in Section III-A.

are corrupted by incrementally adding noise, and converging

to a unit Gaussian distribution N(0, I). New samples can
be generated by reversing the forward diffusion process, by
going from Gaussian noise back to the space of mask frames.
To solve the reverse diffusion process, we need to train a noise
predictor ϵθ(·|t) which is a time-conditioned U-net [49, 50]
trained to predict the noise at each step of the diffusion
process. The input to the network at step t of the diffusion
process is a channel-wise concatenation of the conditioning
frames and noisy mask frames [X0,Xg,M

t
1:K], the output is

the predicted noise of same dimensionality as the input. Fig. 3
illustrates this visually, and equation 1 shows the training
objective L(θ).

Et,[X0,Xg,M1:K]∼ptrain,ϵ∼N (0,I)[
||ϵ− ϵθ(

√
αtM1:K +

√
1− αtϵ|X0,Xg, t)||2

]
Here αt is a hyper-parameter that depends on the noise

schedule of the diffusion process. During inference, given
X0,Xg we obtain M1:K = V(X0,Xg) through reverse
diffusion.

B. The Robot-Action Translation Model

Fig. 4. Architecture of the translation model that transforms predicted
future hand-object masks to a robot trajectory, described in section III-B

We use the human-plan predictor discussed in Section III-A
to hallucinate plausible future hand and object masks for inter-
action in a robot’s physical scene. However, this human-plan
doesn’t directly inform what actions the robot should execute
to be able to perform the desired interaction. To enable robot
manipulation in the context of the predicted plans, we learn a
translation model. The translation model is a transformer that
is conditioned on the outputs of the future prediction model
M1:K and for each observation Xt, and predicts actions for
H steps in the future. The model behaves as a closed-loop
policy π(X≤t,Xg, a<t,M1:K) that is queried at each time-
step t during deployment. Predicting multiple time-steps H
in the future and averaging actions during deployment, helps
in executing smooth robot motions, with less compounding
errors [51]. We describe the architecture of the translation
model in Fig. 4 and additional details in Appendix C.

For training the translation model, we need some paired
human-robot data, where we have pairs of trajectories that
involve a robot manipulating an object, and a human manip-
ulating a similar object. To obtain such paired trajectories,
we develop two approaches:

Collecting paired demonstrations: A human operator
tele-operates a robot in scene, and after reset, or in a parallel
identical setup, a human manipulates a similar object with



Fig. 5. Illustration of the different steps in generating hallucinated human
hand trajectories from robot trajectories. This is an alternate data source for
the translation model in addition to collecting paired human-robot data.

an approximately similar motion as the robot arm. Collecting
this paired data is not very expensive, and we spent around
3 days to collect 600 trajectories.

Hallucinating paired data: To augment the paired
demonstrations, we also propose to leverage (more easily
collectable) robot-only data. To obtain hallucinated pairs, we
can convert videos of a robot trajectory into a videos of a
human trajectory through recent advances in hand in-painting
techniques [49, 52] . Specifically, we obtain robot masks per
frame through simulation, and perform inpainting to remove
the robot from the scene. We then perform guided in-painting
of a plausible human hand [52] around the location of the
robot end-effector in the scene. Fig. 5 visually illustrates this
process of hallucinated data generation. In the experiments,
we show how hallucinated paired data generated through
this approach can be used to boost the performance of the
translation model. Additional details on the hallucinated data
generation are in the Appendix D.

IV. EXPERIMENTS

Through experiments with diverse real-world objects in
unseen scenarios, we demonstrate generalization of our
framework for several robot manipulation tasks. Videos are
in the website https://homangab.github.io/hopman/

A. Experiment Settings

We consider two different types of manipulation settings
for experiments - table top scenarios with a fixed robot and
camera, and in-the-wild manipulation with the same robot
and camera on a mobile base.
Table-Top Manipulation. We consider several everyday
objects with different plausible manipulations for our ex-
periments. We demonstrate results on a total of 16 skills:
pouring, plunging, pushing, picking/placing, slide-opening,
slide-closing, hinge-opening, hinge-closing, swiping, drag-
ging, flipping, scooping, in-place re-orientation, unrolling,
and stacking, and 40 object types, with 2-3 instantiations per
object type, comprising around 100 tasks. Detailed list of
objects and tasks are in the Appendix section B
In-the-Wild Manipulation. We drag a Franka Panda arm on
a mobile base across natural kitchen and office scenes. The
camera is also attached to the base, and moves along with
it. For these experiments we fine-tune the translation model
used for the table-top experiments, on ∼200 additional paired
trajectories collected with the mobile robot. For evaluation,
we consider the same generalization levels described above.
This setting is much more challenging because in addition

Fig. 6. Distribution of skills across tasks in our experiments. The diversity
of skills is more representative of real-world distributions, compared to
pushing/pick and place that is predominant in robot learning papers.

to object and skill variations, we also have scene variations,
including completely new scenes never seen in the paired
data. Details of variations are in the supplementary website.

B. Training data

The training data for our framework consists of a large set
of passive web videos, a small amount of paired human-robot
in-domain data, and some unpaired robot-only data.
Passive Human Data. For the future prediction model, we
use existing passive human videos [11, 14, 53] and obtain
ground-truth semantic masks for the right hand and the object
being interacted with the right hand in each frame [53, 54].
We sample short video clips, each lasting a few seconds and
do not curate the videos in any way with tasks or language
labels.
Paired Data. For the translation model, we use a small
amount of paired collected by us (∼400 trajectories in-lab
and ∼200 trajectories in-the-wild) and a larger robot-only
data (∼1000 trajectories) combined with hallucinated hand
masks through the approach described in section III-B. All
the robot data are collected through an adaptation of the
tele-operation stack proposed in [55].

C. Defining Tasks and Evaluating Generalization

Prior works in robot learning adopt widely different and
oftentimes inconsistent definitions of generalization criteria.
Some prior works [1, 9, 56, 57] consider seen vs. unseen
objects, where the unseen objects often involve different
instantiations of the seen objects, with shape, color, and
texture variations, with skills (e.g. pushing, picking etc.) that
are always seen in the training data. Others [58, 59] only
consider generalization in terms of position and configuration
variations of seen objects. In light of this, in this paper, we
develop a structured criteria for evaluating generalization
in terms of object categories, object instantiations, object
configurations, and skills. We adopt the following definitions
• Task definition: Each task is a tuple consisting

of (object category, object instance, skill). Here,
object category denotes the type of the object e.g.
‘drawer’, ‘mug’, ‘toaster’ etc. While, object instance
defines a particular object within a category, with a specific
instantiation of color, shape, size, and texture. Finally, skill
defines the particular behavior e.g. ‘open’, ‘flip’, ‘push’
etc. that can be done with an object.

https://homangab.github.io/hopman/


Fig. 7. Qualitative results for the entire framework. We show qualitative results for the predicted hand-object trajectory given an initial image of a
scene and a goal image, followed by translation of the predictions to a robot trajectory for execution in the real world.

Fig. 8. Examples of robot evaluations. We show qualitative results for robot evaluations, with an intermediate image and the image corresponding to the
final state reached by the robot, for a given initial scene and a goal image. Subscripts show the type of generalization for each evaluation, as described in
sec IV-C. More robot videos of evaluations are in the linked website.

• Mild generalization (MG): This involves generalizing
among unseen configurations (i.e. position and orientation
variations) for seen object instance and seen skills, along
with mild variations in the scene like lighting changes.

• Standard generalization (G): We have the following types
of generalization in this category
– instance generalization (Ga): In addition to variations

in MG, in Ga we evaluate unseen object instance for
seen skills. For example, only a red mug is seen with
the push skill in training, and we generalize to pushing
motions for green, and purple mugs of different shapes
and textures.

– unseen combinations (Gb): This includes scenarios
with unseen (object category, skill) pairs but each seen
independently in training. So atleast one instance of an
object category is seen during training, and the skillis
also seen during training but not in relation to this object.
For example, ‘open’ is seen, and ‘close door’ is seen
but ‘open door’ is not seen in training.

• Strong Generalization (SG): We categorize the following
types of generalization that involve either a completely
unseen object category or an unseen skill into this
category. These are very challenging tests of generalization.
– object category completely unseen (SGa): This

includes scenarios where a particular object category e.g.
microwave is never seen in training

– skill completely unseen (SGb): This includes scenarios
where a particular skill e.g. re-orientation is never seen
in any context during training.

Note that our formalization of generalization is centered
around objects being interacted with and the skills that
are possible for interaction, and we do not consider scene
variations of the background in the definitions, unlike some
prior work [1, 57, 60, 61, 62]. However, for experiments, we
consider diverse scenes, both for table-top manipulation and
manipulation of objects in-the-wild in unseen kitchens and
offices.



Fig. 9. Summary of results. The numbers represent success rates for
goal-conditioned evaluations, in terms of % of trials that correspond to
manipulating objects in the scene to bring them to the desired goal configu-
rations. We perform evaluations separately for the table-top manipulation
and in-the-wild manipulation experiments.

D. Baselines and Ablations:
We consider a goal-conditioned behavior cloning baseline

(BC) trained on all the robot data (∼1600 trajectories).
The architecture of the policy is a transformer similar to
our translation model without the conditioning on human-
interaction-plans. The next baseline (MP) uses paired human-
robot data, and is an adaptation of [45]. We compare with
VRB [8] by using the affordance model from the paper to do
affordance conditioned imitation learning. We also consider
a baseline that is trained entirely with passive human videos,
for coarse manipulation (H2R) [48]. In addition to these,
we consider variations of our translation model trained on
only in-lab paired human-robot data (∼400 trajectories), only
hallucinated data (∼1000 trajectories), and combined paired
and hallucinated data (∼1400 trajectories).

E. Evaluating Goal-conditioned Manipulation
In this section, we evaluate HOPMan for robot manipula-

tion. Given an image of a scene in the robot workspace and
a goal image, we use the human-interaction-plan predictor
to output a sequence of plausible hand-object masks, which
are input to the translation model that performs closed-loop
control for executing a sequence of actions on the robot.
We evaluate across diverse unseen objects exhibiting several
plausible skills, and unseen scenes in-the-wild, and tabulate
success rates by aggregating over objects for each skill. We
define success in terms of whether the object is brought to
the desired configuration in the goal image.

Fig. 7 shows qualitative results for HOPMan where we see
that the generated human-interaction-plans are plausible and
correspond to manipulating the object to obtain the specified
goal configuration. In Fig. 8 we show more robot evaluations
in terms of an intermediate frame in the trajectory and the
final frame reached at the end of robot evaluation, for different
initial and goal images.

Fig. 10. Translation model ablations. Ablation results for the translation
model alone with specified masked hand-object trajectories instead of future
predictions. Here, P denotes paired data, and H denotes hallucinated data,
described in section III-B. and the numbers represent success rates.

In Fig. 9 we summarize quantitative evaluations across
the different generalization axes. For standard general-
ization G and strong generalization SG, we see that
HOPMan achieves significantly high success rate. This demon-
strates the effectiveness of learning plausible manipulation
trajectories of hands and objects from internet videos com-
bined with small paired data, for generalization to diverse
settings, in comparison to relying on only in-domain data (BC,
MP baselines), on predicting visual affordances combined
with robot data (VRB) or on only passive data (H2R).

F. Ablations of the Translation Model
In this section, we evaluate the translation model in

isolation independent from the prediction model. Specifically
we evaluate how good is the translation model in translating
the motion of a ground-truth hand-object trajectory into robot
trajectories. Here, we introduce different objects in the scene
and manually execute a motion with a human hand to reach
the goal, and then pass the video through the hand-object
segmentation model. We ablate over three variations of the the
translation model, trained with paired data and hallucinated
data, trained with only paired data, and trained with only
hallucinated data, in table-top settings. From Fig. 10, we
observe that training the model with combined paired and
hallucinated data (P+H) leads to better performance than
training with just paired data (P) indicating that the translation
model is able to effectively utilize imperfect hallucinated
trajectories for improving generalization.

V. DISCUSSION AND LIMITATIONS

In this work, we developed a framework for learning
generalizable robot manipulation by combining internet-scale
human videos of everyday interactions with limited in-domain
robot demonstrations. Leveraging these, our framework can
accomplish diverse tasks by predicting plausible hand-object
plans and translating these to the robot’s embodiment. Broadly,
our work is indicative of how rich out-of-domain datasets
like human videos can alleviate the data paucity that greatly
bottlenecks robot learning by helping learn hand-object inter-
action plans, and enable wide generalization of manipulation
skills to unseen scenarios. While our framework does allow
strong generalization to unseen tasks, these are still limited
in their complexity and it would be an interesting future
direction to extend our approach for tacking long-horizon
tasks that requiring composing multiple skills. Moreover, our
framework may struggle with dexterous manipulation tasks
as recovering precise hand and finger articulations from web
videos remains a challenge in computer vision.
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APPENDIX

A. Robot Evaluation Videos

Robot videos are in the website https://homangab.github.io/hopman/

B. List of Tasks

Fig. 11. Summary of the different tasks for table-top manipulation experiments in terms of object types, number of instantiations per object type (variations
in shape, size, color ,texture) and verbs denoting the type of possible skill with each object type

C. Additional details on the models

1) Human-Plan Prediction model:: Instead of predicting the future in the image space, we focus on predicting only the
motion of the human hand and the object being interacted with, in terms of respective semantic masks. We enable this
prediction through a diffusion model trained on diverse human videos on the web. For each video V in the training data, we
extract hand-object masks for each frame . Let M1:K denote the respective mask frames from time steps 1 to K. We set the
value of K = 7 for our experiments, which amounts to choosing 7 uniformly space frames in a 2 second window of a video
clip. For simplicity we consider each mask frame to be an image, where all the hand pixels are green, all the object pixels

https://homangab.github.io/hopman/


are red, and the rest of the pixels are black. the Let X0 denote the first frame (RGB) of the video, and Xg denote the last
frame (RGB) of the video, which will act as an optional goal frame. The diffusion model operates at a resolution of 64x64
for the predicted masked frames.

In the forward diffusion process, all the mask frames M1:K are corrupted by incrementally adding noise, and converging
to a unit Gaussian distribution N(0, I). New samples can be generated by reversing the forward diffusion process, by going
from Gaussian noise back to the space of mask frames. To solve the reverse diffusion process, we need to train a noise
predictor ϵθ(·|t) which is a time-conditioned U-net trained to predict the noise at each step of the diffusion process. The input
to the network at step t of the diffusion process is a channel-wise concatenation of the conditioning frames and noisy mask
frames [X0,Xg,M

t
1:K], and the output is the predicted noise of same dimensionality as the input. The training objective is

as follows:

Et,[X0,Xg,M1:K]∼ptrain,ϵ∼N (0,I)

[
||ϵ− ϵθ(

√
αtM1:K +

√
1− αtϵ|X0,Xg, t)||2

]
Here α is a constant hyper-parameter that depends on the noise schedule of the diffusion process. The architecture of the

U-Net for the Diffusion model is based on prior works [50, 63], and it uses a combination of 2D convolutions, multi-head
self-attention layers, and adaptive group-norm. The noise levels (p ∈ [0, 1]) use positional encodings that are adapted to the
correct dimensionality for each residual block through fully connected layers. The individual residual blocks in the U-Net
consist of GroupNorm, conv layers, fully connected layers, and dropout, and follow the architecture in [50].

For training the prediction model we obtain 2 second video clips from EpicKitchens [16] and Ego4D [14]. To obtain
ground-truth hand-object masks, we use Visor annotations [53] for EpicKitchens and an off-the-shelf predictor [54] for
obtaining the masks from Ego4D videos. In total, we curate around 150,000 video clips for training. The prediction model
takes about 70 hours to train for 250,000 iterations on 8 2080Ti GPUs with a batch size of 64, and learning rate 1e-5.

2) The Translation model: The translation model is a transformer that is conditioned on the outputs of the future prediction
model M1:K and for each observation Ot, predicts actions for H steps in the future. The model behaves as a closed-loop
policy that is queried at each time-step t during deployment. The horizon lengths for each trajectory is 40, and we predict
for H = 10 horizon at each time-step. The observations are of resolution 224x224, and we process them with ResNet18
backbones to obtain features. We upsample the predicted masks from 64x64 to to 224x224 dimension images and process
them also with ResNet18 CNNs. At each time-step we feed in a history of 3 steps, i.e. the past two observations and actions,
and the current observation. The actions are of dimension 8 (7 for joint positions, and the 8th dimension for end-effector
open/close). We directly predict target joint positions instead of delta positions, as shown to be helpful by recent work [51].
The transformer encoder has 4 self-attention blocks, and the decoder has 7 cross-attention blocks, and the hidden dimensions
are of size 512. We use a learning rate of 1e-5, batch size of 32, and dropout 0.1.

D. Hallucinated Data Generation Details

To augment the paired demonstrations, we develop an approach of using (more easily collectable) robot-only data. Given a
robot trajectory video, we want to obtain a corresponding video where the robot in the scene is replaced by a human hand.
To obtain such hallucinated pairs, we convert videos of robot trajectories into videos of human trajectories through recent
advances in hand in-painting techniques [49, 52]. Given a robot trajectory, we first obtain robot masks per frame by bringing
the robot to the specific joint position per-timestep in MuJoCo simulation [64]. Based on the per-frame robot masks, we
inpaint each image in the trajectory to remove the robot from the scene, using an off-the-shelf inpainting model [49]. After
we have removed the robot from each frame of the trajectory, we want to place a human hand where the robot end-effector
used to be in each image. To do this, we perform guided in-painting of a plausible human hand around the location of the
robot end-effector in the scene, using the approach in [52]. So finally, a video of a robot trajectory is thus converted to
a video of an approximate human trajectory, such that the robot arm is replaced with a human hand at approximately the
location where the end-effector used to be.

E. Baselines and Ablations

We consider a goal-conditioned behavior cloning baseline that is not conditioned on the predicted masks, and is directly
trained on all the robot data collected in-lab (∼1400 trajectories). For the in-the-wild experiments, we additionally fine-tune
the model with the 200 paired trajectories collected for these experiments. The architecture of the policy is a transformer
similar to our translation model without the conditioning on hand-object masks, and keeping everything else the same.

We consider another baseline that uses paired in-lab human-robot data, to be an adaptation of MimicPlay [45] . We train
the latent planner model of MimicPlay (MP) with the human-data in the paired data of 400 trajectories we have collected
for the experiments. For the in-the-wild experiments, we additionally fine-tune the model with the 200 paired trajectories
collected for these experiments. Note that in the original paper [45], there are a limited number of tasks (14) and human
hand data is collected for 10 minutes per scene. In comparison, our paired data of 400 trajectories is much smaller and
encompass around 40 tasks, since we focus mostly on learning from out-of-domain passive human videos from the web. We



cannot use this large passive data for MimicPlay baseline as their framework relies on having the human videos in the exact
same setup as the robot teleop data.

We compare with two baselines that use passive human videos in different ways. The first comparison is with VRB [8] by
using the affordance model from the paper to do affordance conditioned imitation learning. The second comparison is a
baseline that is trained entirely with passive human videos, for coarse manipulation (H2R) [48].

In addition to these, for the table-top experiments we consider variations of our translation model trained on only paired
human-robot data (∼400 trajectories), only hallucinated data (∼1000 trajectories), and combined paired and hallucinated
data (∼1400 trajectories). These ablations are on the same translation model architecture, and use manually specified hand
trajectories transformed to hand-object masks through [54]. We manually provide masks instead of the predictions from the
human plan prediction model, in order to evaluate the translation model in isolation independent from the prediction model.

F. Table-Top Robot Experiment Setup Details

For the robot experiments, we use several everyday objects like doors, microwaves, bowls, spatulas, boxes, french presses
etc. (Fig. 11 has the overall list of objects), a fixed Intel Realsense camera in the scene, and a Franka Emika Panda arm
operated through joint position control. We do not impose any artificial constraints on the robot’s motions beyond what
is possible without reaching joint limits. The action space of the translation model is 8 dimensional (7 for joint controls,
and the 8th dimension for open/close of the gripper) We attach a Robotiq gripper to the arm with two festo finger grippers
(for flexible grasps), so the overall end-effector is a two-finger gripper. As is the convention with image goals in real-robot
experiments, we evaluate success by manually inspecting proximity of the final object configuration after robot execution,
with that in the corresponding goal image.

G. In-The-Wild Robot Experiment Setup Details

We use the same Franka Emika Panda arm with flexible two finger grippers as the previous table-top experiments. The
only difference is that the robot is now mounted on a mobile base with four wheels that can be moved around. The same
Intel Realsense camera is mounted next to the robot on the mobile base. We drag the robot across different kitchen and
office scenes and perform experiments with the same setup described previously. Importantly, we do not modify the scenes
and directly test on existing office and kitchen scenes. Please refer to the evaluation videos on the website for the diversity
of manipulation skills and behaviors we are able to demonstrate with our framework. https://homangab.github.io/hopman/

https://homangab.github.io/hopman/
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