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Abstract— How can robot manipulation policies generalize to
novel tasks involving unseen object types and new motions? In
this paper, we provide a solution in terms of predicting motion
information from web data through human video generation
and conditioning a robot policy on the generated video. Instead
of attempting to scale robot data collection which is expensive,
we show how we can leverage video generation models trained
on easily available web data, for enabling generalization. Our
approach Gen2Act casts language-conditioned manipulation as
zero-shot human video generation followed by execution with a
single policy conditioned on the generated video. To train the
policy, we use an order of magnitude less robot interaction
data compared to what the video prediction model was trained
on. Gen2Act doesn’t require fine-tuning the video model at
all and we directly use a pre-trained model for generating
human videos. Our results on diverse real-world scenarios show
how Gen2Act enables manipulating unseen object types and
performing novel motions for tasks not present in the robot
data. https://homangab.github.io/gen2act/

I. INTRODUCTION

To realize the vision of robot manipulators helping us
in the humdrum everyday activities of messy living rooms,
offices, and kitchens, it is crucial to develop robot policies
capable of generalizing to novel tasks in unseen scenarios.
In order to be practically useful, it is desirable to not
require adapting the policy to new tasks through test-time
optimizations and instead being able to directly execute
it given a colloquial task specification such as language
instructions. Further, such a policy should be able to tackle
a broad array of everyday tasks like manipulating articulated
objects, pouring, re-orienting objects, wiping tables without
the need to collect robot interaction data for every task unlike
recent efforts on behavior cloning with robot datasets [1–4].
This is because collecting large robot datasets that cover the
diversity of everyday scenarios is extremely challenging and
might be deemed impractical.

In order to mitigate issues with purely scaling robotic
datasets, a line of recent works have sought to incorporate
additional behavioral priors in representation learning by
pre-training visual encoders with non-robotic datasets [5–9]
and co-training policies with vision-language models [10–
12]. Going beyond abstract representations, other works have
learned attributes from web videos more directly informative
of motion in the form of predicting goal images [13–
15], hand-object mask plans [16], and embodiment-agnostic
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Fig. 1: Gen2Act learns to generate a human video followed by robot policy
execution conditioned on the generated video. This enables diverse real-
world manipulation in unseen scenarios.

point tracks [17]. These approaches show promising signs
of generalization to tasks unseen in the robot interaction
datasets, but training such specific predictive models from
web video data requires utilizing other intermediate models
for providing ground-truths and thus are hard to scale up.

Our key insight for enabling generalization in manipu-
lation is to cast motion prediction from web data in the
very generic form of zero-shot video prediction. This lets us
directly leverage advances in video generation models, by
conditioning a robot policy on the generated video for new
tasks that are unseen in the robot datasets. We posit that
as video generation models get better due to large interest
in generative AI [18–20] beyond robotics, an approach that
relies on learning a policy conditioned on zero-shot video
prediction can effectively scale and generalize to increasingly
diverse real-world scenarios. For performing a manipulation
task in a novel scene, a generated video conditioned on the
language description of the task is particularly useful for
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Fig. 2: Architecture of the translation model of Gen2Act (closed-loop policy πθ). Given an image of a scene I0 and a language-goal description
of the task G, we generate a human video Vg with a pre-trained video generation model V(I0,G). During training of the policy, we incorporate track
prediction from the policy latents as an auxiliary loss in addition to a behavior cloning loss. Dotted pathways show training-specific computations. During
inference, we do not require track prediction and only use the video model V in conjunction with the policy πθ(It−k:t,Vg).

conveying what needs to be done and in capturing motion-
centric information of how to perform the task that can
then be converted to robot actions through a learned policy.
Compared to a generated video, a language description or a
goal image alone only conveys what the task is.

We develop Gen2Act by instantiating language-
conditioned manipulation as human video generation
followed by generated human video to robot translation
with a closed-loop policy (Fig. 1). We opt for generating
human videos as opposed to directly generating robot
videos since video generation models are often trained
with human data on the web, and they are able to generate
human videos zero-shot given a new scene. We then
train a translation model that needs some offline robot
demonstrations and corresponding generated human videos.
We generate these corresponding human videos offline with
an off-the-shelf model [20] by conditioning on the first
frame of each trajectory (the first frame doesn’t have the
robot in the scene) and the language description of the task.
We instantiate this translation model as a closed loop policy
that is conditioned on the history of robot observations in
addition to the generated human video so that it can take
advantage of the visual cues in the scene and adjust its
behavior reactively.

In order to capture motion information beyond that implic-
itly provided by visual features from the generated video,
we extract point tracks from the generated human video
and the video of robot observations (through an off-the-
shelf tracker [21]) and optimize a track prediction auxiliary
loss during training. The aim of this loss function is to
ensure that the latent tokens of the closed-loop policy are
informative of the motion of points in the scene. We train
the policy to optimize the typical behavior cloning loss for
action prediction combined with this track prediction loss.
For deployment, give a language description of a task to be
performed, we generate a human video and run the policy
conditioned on this video.

The diverse real-world manipulation results
of Gen2Act (featured in Fig. 1) demonstrate the broad
generalization capabilities enabled by learning to infer

motion cues from web video data through zero-shot
video generation combined with motion extraction through
point track prediction for solving novel manipulation
tasks in unseen scenarios. For generalization to novel
object types and novel motion types unseen in the robot
interaction training data, we show that Gen2Act achieves
on average ∼ 30% higher absolute success rate over
the most competitive baseline. Further, we demonstrate
how Gen2Act can be chained in sequence for performing
long-horizon activities like “making coffee” consisting of
several intermediate tasks.

II. RELATED WORKS

We discuss prior works in imitation learning with vi-
sual observations, learning representations from non-robotic
datasets, and approaches for conditional behavior cloning.
Visual Imitation. Visual imitation is a scalable approach for
robotic manipulation [22–24] and end-to-end policy learning
more broadly [25, 26]. While early works in multi-task
imitation learning collected limited real-world data [27, 28],
more recent approaches [1, 29, 30] collect much larger
datasets. In fact, recent works that have attempted to directly
scale this for training large models have required years of
expensive data collection [1, 2, 10] and have still been
restricted to limited generalization especially with respect
to novel object types and novel motions in unseen scenarios.
Visual Representations for Manipulation. To enable gener-
alization, many recent works propose using pre-trained visual
representations trained primarily on non-robot datasets [31,
32], for learning manipulation policies [5, 6, 6–9, 33–36].
However, they are primarily limited to learning task-specific
policies [5, 8, 37, 38] as they rely on access to a lot of
in-domain robot interaction data. Apart from training visual
encoders, a line of works augment existing robot datasets
with semantic variations using generative models [2, 39–42].
While this enables policies to generalize to unseen scenes and
become robust to distractors, generalization to unseen object
types and motion types still remains a challenge.
Conditional Behavior Cloning. Some prior works train
robotic policies conditioned on human videos but require
paired in-domain human-robot data [43–48] and are not



capable of leveraging web data. Others use curated data
of human videos to leverage human hand motion infor-
mation [49, 50] for learning task-specific policies (instead
of a single model across generic tasks). Towards learning
structure more directly related to manipulation from web
videos, some works try to predict visual affordances in the
form of where to interact in an image, and local information
of how to interact [51–55]. While these could serve as good
initializations for a robotic policy, they are not sufficient on
their own for accomplishing tasks, and so are typically used
in conjunction with online learning, requiring several hours
of deployment-time training and robot data [13, 53, 56].
Others learn to predict motion from web data more directly in
the form of masks of hand and objects in the scene [16] and
tracks of how arbitrary points in the scene should move [17],
for conditional behavior cloning. However, training such
predictive models from web videos requires reliance on
intermediate models for providing ground-truth information
and are thus hard to scale up broadly.

III. APPROACH

We develop a language-conditioned robot manipulation
system, Gen2Act that generalizes to novel tasks in unseen
scenarios. To achieve this, we adopt a factorized approach:
1) Given a scene and a task description, using an exist-
ing video prediction model generate a video of a human
solving the task, 2) Conditioned on the generated human
video infer robot actions through a learned human-to-robot
translation model that can take advantage of the motion cues
in the generated video. We show that this factorized strategy
is scalable in leveraging web-scale motion understanding
inherent in large video models, for synthesizing how the
manipulation should happen for a novel task, and utilizing
orders of magnitude less robot interaction data for the much
simpler task of translation from a generated human video to
what actions the robot should execute.

A. Overview and Setup

Given a scene specified by an image I0 and a goal G
describing in text the task to be performed, we want a robot
manipulation system to execute actions a1:H for solving the
task. To achieve this in unseen scenarios, we learn motion
predictive information from web video data in the form of
a video prediction model V(I0,G) that zero-shot generates
a human video of the task, Vg . In order to translate this
generated video to robot actions, we train a closed-loop
policy πθ(It−k:t,Vg) conditioned on the video and the last
k robot observations, through behavior cloning on a small
robot interaction dataset Dr. In order to implicitly encode
motion information from Vg in the policy πθ, we extract
point tracks from both Vg and It−k:t, respectively τg and
τr, and incorporate track prediction as an auxiliary loss Lτ

during training. Fig. 2 shows an overview of this setup.

B. Human Video Generation

We use an existing video generation model for the task
of text+image conditioned video generation. We find that

Fig. 3: Visualization of zero-shot video generation for different tasks. The
blue frame and the language description are input to the video generation
model of Gen2Act and the black frames show sub-sampled frames of the
generated video. These results demonstrate the applicability of off-the-shelf
video generation models for image+text conditioned video generation that
preserves the scene and performs the desired manipulation task.

current video generation models are good at generating
human videos zero-shot without requiring any fine-tuning
or adaptation (some examples in Fig. 3). Instead of trying to
generate robot videos as done by some prior works [57, 58],
we focus on just human video generation because current
video generation models cannot generate robot videos zero-
shot and require robot-specific fine-tuning data for achieving
this. Such fine-tuning often subtracts the benefits of gener-
alization to novel scenes that is inherent in video generation
models trained on web-scale data.

For training, given an offline dataset of robot trajectories
Dr along with language task instructions G, we create a
corresponding generated human video dataset Dg by gen-
erating videos conditioned on the first frame of the robot
trajectories and the language instruction. This procedure of
generating paired datasets {Dr,Dg} is fully automatic and
does not require manually collecting human videos as done
by prior works [46, 59]. We do not require the generated
human videos to have any particular structure apart from
looking visually realistic, manipulating the relevant objects
plausibly, and having minimal camera motion. As seen in the
qualitative results in Fig. 3, all of this is achieved zero-shot
with a pre-trained video model.

During evaluation, we move the robot to a new scene
I0, specify a task to be performed in language G, and then
generate a human video Vg = V(I0,G) that is fed into the
human-to-robot translation policy, described in Section III-
C. Our approach is not tied to a specific video generative
model and as video models become better, this stage of our
approach will likely scale upwards. We expect the overall
approach to generalize as well since the translation model
is tasked with a simpler job of inferring motion cues from
the generated human video in novel scenarios, and implicitly
converting that to robot actions. As we show through results
in Section III-C only a small amount of diverse robot
trajectories (∼ 400) combined with existing offline datasets
is enough to train a robust translation model.



Fig. 4: Visualization of the closed-loop policy rollouts (bottom row) conditioned on the generated human videos (top row) for four tasks. The red frame
and the language description are input to the video generation model of Gen2Act . The black frames show sub-sampled frames of the generated video,
and the blue frames show robot executions conditioned on the generated video.

C. Generated Human Video to Robot Action Translation

We instantiate generated human video to robot action
translation as a closed loop policy πθ. Given a new scene
and a task description, the generated human video provides
motion cues for how the manipulation should happen in the
scene, and the role of the policy is to leverage relevant
information from the generated video, combined with ob-
servations in the robot’s frame, for interacting in the scene.
Instead of attempting to explicitly extract waypoints from
the generated video based on heuristics, we adopt a more
end-to-end approach that relies on general visual features
of the video, and general point tracks extracted from the
video. This implicit conditioning on the generated video is
helpful in mitigating potential artifacts in the generation and
in making the approach more robust to mismatch in the
video and the robot’s embodiment. Note that we perform
human video generation and ground-truth track extraction
completely offline for training.
Visual Feature Extraction. For each frame in the gener-
ated human video Vg and the robot video It−k:k, we first
extract features, ig and ir through a ViT encoder χ. The
number of video tokens extracted this way is very large and
they are temporally uncorrelated, so we have Transformer
encoders Φg and Φr that process the respective video tokens
through gated Cross-Attention Layers based on a Perceiver-
Resampler architecture [60] and output a fixed number N =
64 of tokens. These tokens respectively are zg = Φg(ig) and
zr = Φr(ir).

In addition to visual features from the generated video,
we encode explicit motion information in the human-to-robot
translation policy through point track prediction.
Point Track Prediction. We run an off-the-shelf tracking
model [21, 61] on the generated video Vg to obtain tracks
τg of a random set of points in the first frame P 0. In order to
ensure that the latent embeddings from the generated video
zg can distill motion information in the video, we set up a
track prediction task conditioned on the video tokens. For

this, we define a track prediction transformer ψg(P
0, i0g, zg)

to predict tracks τ̂g and define an auxiliary loss ||τg − τ̂g||2
to update tokens ge.

Similarly, for the current robot video It−k:k, we set up a
similar track prediction auxiliary loss. We run the ground-
truth track prediction once over the entire robot observation
sequence (again with random points in the first frame P0),
but during training, the policy is input a chunk of length
k in one pass. So here, the track prediction transformer
ψr(P

t−k, it−k, r
t−k:t
e ) is conditioned on the points in the

beginning of the chunk Pt−k, the image features at that time-
step it−k and the observation tokens for the chunk zr.
BC Loss. For ease of prediction, we discretize the action
space such that each dimension has 256 bins. We optimize
a Behavior Cloning (BC) objective by minimizing error
between the predicted actions ât:t+h and the ground-truth
at:t+h through a cross-entropy loss.

In Gen2Act, we incorporate track prediction as an auxiliary
loss during training combined with the BC loss and the track
prediction transformer is not used at test-time. This is helpful
in reducing test-time computations for efficient deployment.

D. Deployment

For deploying Gen2Act to solve a manipulation task, we
first generate a human video conditioned on the language
description of the task and the image of the scene. We then
roll out the generated video conditioned closed-loop policy.
For chaining Gen2Act to perform long-horizon activities
consisting of several tasks, we first use an off-the-shelf LLM
(e.g. Gemini) to obtain language descriptions of the different
tasks. We chain Gen2Act for the task sequence by using the
last image of the previous policy rollout as the first frame for
generating a human video of the subsequent task. We do this
chaining in sequence as opposed to generating all the videos
from the first image because the final state of the objects in
the scene might be different after the robot execution of an
intermediate task.



IV. EXPERIMENTS

We perform experiments in diverse kitchen, office, and lab
scenes, across a wide array of manipulation tasks. Through
these experiments we aim to answer the following questions:

• Is Gen2Act able to generate plausible human videos of
manipulation in diverse everyday scenes?

• How does Gen2Act perform in terms of varying levels of
generalization with new scenes, objects, and motions?

• Can Gen2Act enable long-horizon manipulation through
chaining of the video generation and video-conditioned
policy execution?

• Can the performance of Gen2Act for new tasks be im-
proved by co-training with a small amount of additional
diverse human tele-operated demonstrations?

A. Details of the Evaluation Setup

Following prior works in language/goal-conditioned pol-
icy learning, we quantify success in terms of whether the
executed robot trajectory solves the task specified in the
instruction, and define success rate over different rollouts
for the same task description. We categorize evaluations with
respect to different levels of generalization by following the
terminology of prior works [1, 17]:

• Mild Generalization (MG): unseen configurations of
seen object instances in seen scenes; organic scene
variations like lighting and background changes

• Standard Generalization (G): unseen object instances in
seen/unseen scenes

• Object-Type Generalization (OTG): completely unseen
object types, in unseen scenes

• Motion-Type Generalization (MTG): completely un-
seen motion types, in unseen scenes

Here, seen vs. unseen is defined with respect to the robot
interaction data, and the assumption is that the video gener-
ation model has seen diverse web data including things that
are unseen in the robot data.

B. Dataset and hardware details

For video generation, we use an existing video model,
VideoPoet [20] by adapting it to condition on square images
in addition to language description of tasks. We do not do
any fine-tuning of this model for our experiments, and find
that it directly generalizes to human video generation in all
the robot experiment scenes.

For robot experiments, we use a mobile manipulator with
compliant two finger-grippers, and operate this robot for
policy deployment through end-effector control. The arm is
attached to the body of the robot on the right. We manually
move the robot around across offices, kitchens, and labs and
ask it to manipulate different objects in these scenes. We
operate the robot for manipulation at a frequency of 3Hz.
Before each task, we reset the robot arm to a fixed pre-
defined reset position such that the scene is not occluded
through the robot’s camera.

For training the video-conditioned policy, we use an
existing offline dataset of robot demonstrations collected

TABLE I: Comparison of success rates for Gen2Act with dif-
ferent baselines and an ablated variant for the different levels of
generalization as defined in Section IV-A

Mild
(MG)

Standard
(G)

Obj. Type
(OTG)

Motion. Type
(MTG) Avg.

RT1 68 18 0 0 22
RT1-GC 75 24 5 0 26

Vid2Robot 83 38 25 0 37
Gen2Act (w/o track) 83 58 50 5 49

Gen2Act 83 67 58 30 60

by a prior work [1] and augment this with some paired
demonstrations of human videos collected by another prior
work [46]. In addition, we create pairs of the form
(generated human video,robot demo) by using the
video generation model conditioned on the first frame of
the respective robot demo, to generate a corresponding
human video. For obtaining tracks on the generated human
video and the robot demo, we use an off-the-shelf tracking
approach [21, 61]. Generating human videos, and generating
point tracks are done completely offline once and do not
induce any additional cost during policy training.

C. Baselines and Comparisons

We perform comparisons with baselines and ablations
with variants of Gen2Act. In particular, we compare with
a language-conditioned policy baseline (RT1) [1] trained on
the same robot data as Gen2Act. We also compare with
a video-conditioned policy baseline trained on paired real
human and robot videos (Vid2Robot) [46], a goal-image
conditioned policy baseline trained with the same real and
generated videos of Gen2Act but by conditioning on just the
last video frames (i.e. goal image) of the generated human
videos (RT1-GC). Finally, we consider an ablated variant of
Gen2Act without the track prediction loss.

D. Analysis of Human Video Generations

Fig. 3 shows qualitative results for human video generation
in diverse scenarios. We can see that the generated videos
correspond to plausibly manipulating the scene in the initial
image as described by the text instruction. We can see
that the respective object in the scene is manipulated while
preserving the background and without introducing camera
movements and artifacts in the generations. This is exciting
because these generations are zero-shot in novel scenarios
and can be directly used in a robot’s context to imagine how
an unseen object in an unseen scene should be manipulated
by a human.

E. Generalization of Gen2Act to scenes, objects, motions

In this section we compare performance of Gen2Act with
baselines and ablated variants for different levels of gen-
eralization. Table I shows success rates for tasks averaged
across different levels of generalization. We observe that
for higher levels of generalization, Gen2Act achieves much
higher success rates indicating that human video generation
combined with explicitly extracting motion information from
track prediction is helpful in unseen tasks.



Fig. 5: Robot executions for a sequence of tasks. The last frame of the previous execution serves as the conditioning frame for next stage video generation.

TABLE II: Comparison of success rates for long-horizon activi-
ties via chaining of different tasks. We first obtain sub-tasks for
activities with an off-the-shelf LLM and then rollout Gen2Act in
sequence for the different intermediate tasks.

Activity Stages (from Gemini) Success %
Stage 1, Stage 2, Stage 3

St
ow

in
g

A
pp

le

1. Open the Drawer
2. Place Apple in Drawer
3. Close the Drawer

80, 60, 60

M
ak

in
g

C
of

fe
e

1. Open the Lid
2. Place K-Cup Pod inside
3. Close the Lid

40, 20, 20

C
le

an
in

g
Ta

bl
e

1. Pick Tissues from Box
2. Press the Sanitizer Dispenser
3. Wipe the Table with Tissues

60, 40, 40

H
ea

tin
g

So
up 1. Open the Microwave

2. Put Bowl inside Microwave
3. Close the Microwave

40, 20, 20

F. Chaining Gen2Act for long-horizon manipulation

We now analyze the feasibility of Gen2Act for solving
a sequence of manipulation tasks through chaining. Ta-
ble II shows results for long-horizon activities like “Making
Coffee” that consist of multiple tasks to be performed in
sequence. We obtain this sequence of tasks through Gem-
ini [62], and for each task, condition the video generation
on the last image of the scene from the previous execution
and execute the policy for the current task conditioned on the
generated human video. We repeat this in sequence for all
the stages, and report success rates for successful completion
upto each stage over 5 trials. Fig. 5 visually illustrates single-
take rollouts from four such long-horizon activities.

G. Co-Training with additional teleop demonstrations

The offline dataset we used for experiments in the previous
section had limited coverage over scenes and types of tasks
thereby allowing less than 60% success rate of Gen2Act for
higher levels of generalization (OTG and MTG in Table I).
In this section, we perform experiments to understand if
adding a small amount of additional diverse tele-operated
trajectories, for co-training with the existing offline dataset,
can help improve generalization. We keep the video gen-
eration model fixed as usual. From the results in Table III
we see improved performance of Gen2Act with such co-
training. This is exciting because it suggests that with only

TABLE III: Analysis of co-training with an additional dataset of
diverse tele-operated robot demonstrations (∼ 400 trajectories).

Co-Training Mild
(MG)

Standard
(G)

Obj. Type
(OTG)

Motion. Type
(MTG) Avg.

Gen2Act (w/o co-train) 83 67 58 30 60
Gen2Act (w/ co-train) 85 75 62 35 64

a small amount of diverse demonstrations, the translation
model of Gen2Act can be improved to better condition on
the generated videos for higher levels of generalization where
robot data support is limited.

H. Analysis of Failures

Here we discuss the type of failures exhibited by Gen2Act.
We observe that for MG and to some extent in G, inaccura-
cies in video generation are less correlated with failures of
the policy. While, for the higher levels of generalization, ob-
ject type (OTG) and motion type (MTG), if video generation
yields implausible videos, then the policy doesn’t succeed in
performing the tasks. This is also evidence that the policy
of Gen2Act is using the generated human video for inferring
motion cues while completing a task, and as such when video
generation is incorrect in scenarios where robot data support
is limited (e.g. in OTG and MTG), the policy fails.

V. DISCUSSION AND CONCLUSION

Summary. In this work, we developed a framework for
learning generalizable robot manipulation by combining
zero-shot human video generation from web data with lim-
ited robot demonstrations. Broadly, our work is indicative
of how motion predictive models trained on non-robotic
datasets like web videos can be used to used to enable
generalization of manipulation policies to unseen scenarios,
without requiring collection of robot data for every task.
Limitations. Our work focused on zero-shot human video
generation combined with point track prediction on the
videos as a way for providing motion cues to a robot
manipulation system for interacting with unseen objects
and performing novel tasks. As such, the capabilities of
our system are limited by the current capabilities of video
generation models, like inability to generate realistic hands
and thereby limited ability to perform very dexterous tasks.
Future Work. It would be an interesting direction of future
work to explore recovering more dense motion information
from the generated videos beyond point tracks, like object
meshes for addressing some of the limitations. Another
important direction would be to enable reliable long-horizon
manipulation by augmenting chaining with learning recovery
policies for intermediate failures.
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APPENDIX

Here we provide additional details on the method and
experiments of Gen2Act.

A. Human Video Generation

We use a pre-trained VideoPoet model [20] directly with-
out any adaptation or fine-tuning. The input to the model
for video generation is a language description of a task
(the prompt) and a square-shaped image. By virtue of being
trained on diverse large-scale video datasets (> 270M
videos) we find that this model generalizes well to everyday
tasks we develop Gen2Act for. It can generate realistic and
plausible videos of humans manipulating objects, without
introducing significant camera motions/artifacts in the gen-
erated videos. We ensure that the image of the scene input
to the model doesn’t have the robot in the frame (the initial
reset position of the robot is such that the arm is mostly out
of camera view). The language prompt to the model is of
the form “A person task-name, static camera” e.g. for the
task ‘opening the microwave’ the input prompt is “A person
opening the microwave, static camera.”

B. Closed-Loop Policy

For each frame in the generated human video Vg and the
robot video It−k:k, we first extract features, ig and ir through
a ViT encoder χ. The number of video tokens extracted
this way is very large and they are temporally uncorrelated,
so we have Transformer encoders Φg and Φr that process
the respective video tokens through gated Cross-Attention
Layers based on a Perceiver-Resampler architecture [60]
and output a fixed number N = 64 of tokens. We use
2 Perceiver-Resampler layers for both the generated video
token processing and the robot observation history video
processing. These tokens respectively are zg = Φg(ig) and
zr = Φr(ir). During training we sample a fixed sequence of
16 frames from the generated video ensuring that we always
sample the first and last frames. For the robot history, we
choose the last 8 frames of robot observations. We resize all
images to 224x224 dimensions.

We run an off-the-shelf tracking model [21, 61] on the
generated video Vg to obtain tracks τg of a random set of
points in the first frame P 0. In order to ensure that the latent
embeddings from the generated video zg can distill motion
information in the video, we set up a track prediction task
conditioned on the video tokens. For this, we define a track
prediction transformer ψg(P

0, i0g, zg) to predict tracks τ̂g and
define an auxiliary loss ||τg − τ̂g||2 to update tokens ge.
Similarly, for the current robot video It−k:k, we set up a
similar track prediction auxiliary loss. We run the ground-
truth track prediction once over the entire robot observation
sequence (again with random points in the first frame P0),
but during training, the policy is input a chunk of length
k in one pass. So here, the track prediction transformer
ψr(P

t−k, it−k, r
t−k:t
e ) is conditioned on the points in the

beginning of the chunk Pt−k, the image features at that time-
step it−k and the observation tokens for the chunk zr. The
track prediction transformer has 6 self-attention layers with

8 heads and its role is solely to make the input tokens from
generated video / robot observations informative of motion
cues. Note that any ground-truth track prediction model can
be used for this, and recent advances in point tracking can
help improve this step [63, 64]

For ease of prediction, we discretize the action space such
that each dimension has 256 bins. So each action dimension
can take values in the range [0, 255]. The bins are uniformaly
distributed within the bounds of each dimension. We predict
actions in the end-effector space, and also predict whether
to terminate the episode, and whether the gripepr should be
open/close. We optimize a Behavior Cloning (BC) objective
by minimizing error between the predicted actions ât:t+h and
the ground-truth at:t+h through a cross-entropy loss. This
discrete action-space for prediction is based on prior works
in multi-task imitation learning [1].

C. Chaining Gen2Act for Long-Horizon Manipulation

For deploying Gen2Act to solve a manipulation task, we
first generate a human video conditioned on the language
description of the task and the image of the scene. We then
roll out the generated video conditioned closed-loop policy.
For chaining Gen2Act to perform long-horizon activities
consisting of several tasks, we first use an off-the-shelf LLM
(e.g. Gemini) to obtain language descriptions of the different
tasks. We chain Gen2Act for the task sequence by using the
last image of the previous policy rollout as the first frame
for generating a human video of the subsequent task. We
do this chaining in sequence as opposed to generating all
the videos from the first image because the final state of
the objects in the scene might be different after the robot
execution of an intermediate task. This iterative sequencing
of video generation after the previous robot execution is
made possible by the fast generation capabilities of the Video
model we use, VideoPoet (it takes less than 10 seconds to
generate a new video after generating the very first video).

We provide examples of the prompt to Gemini and the
subsequent outputs for task decomposition below:
Cleaning the Table. Q. What are the steps involved in
cleaning a table with sanitizer dispenser and tissues? (write
three steps)

A: Steps for Cleaning a Table with Sanitizer Dispenser
and Tissues:

• Gather materials: Pick tissues from the box.
• Apply sanitizer: Press the sanitizer dispenser onto the

tissue.
• Wipe: Gently wipe the table surface with the sanitizer-

dampened tissues.
Making Coffee. Q. What are the steps involved in making
coffee with a Keurig? (write first three steps)

A: Steps for Making Coffee with a Keurig:
• Open the lid: Open the lid of the Keurig machine.
• Insert K-Cup: Place a K-Cup pod into the machine.
• Close the lid: Close the lid of the Keurig machine.

Videos for these tasks are best viewed in the project website.



Fig. 6: Analysis of failures of Gen2Act. The tasks here correspond to object type generalization. We can see that most of the failures
of robot execution (top 3 rows) are correlated with incorrect video generations. In the last row the video generation is plausible but the
execution is incorrect in following the trajectory of the generated video afetr grasping the object.

D. Analysis of Failures

Here we discuss the type of failures exhibited by Gen2Act.
We observe that for MG and to some extent in G, inaccu-
racies in video generation are less correlated with failures
of the policy. While, for the higher levels of generaliza-
tion, object type (OTG) and motion type (MTG), if video
generation yields implausible videos, then the policy doesn’t
succeed in performing the tasks. This is also evidence that the
policy of Gen2Act is using the generated human video for
inferring motion cues while completing a task, and as such
when video generation is incorrect in scenarios where robot
data support is limited (e.g. in OTG and MTG), the policy
fails. Fig. 6 shows some examples of failures of Gen2Act in
different tasks. Most of the failures are correlated with video
generation (first three rows) but generating a video plausibly
(fourth row) is not a guarantee of the policy succeeding
because there might be issues with grasping the object
correctly and following the trajectory of the object post grasp.
This indicates potential for future work to explore recovering
more dense motion information from the generated videos
beyond point tracks, like object meshes for mitigating some
of the failures.
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